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EVALUATING QUANTUM COMPUTING
CIRCUITS IN VIEW OF THE RESOURCE
COSTS OF A QUANTUM ALGORITHM

CROSS-REFERENCE TO A RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 62/676,539, filed May 25, 2018, titled
“EVALUATING QUANTUM COMPUTING CIRCUITS
IN VIEW OF THE RESOURCE COSTS OF AQUANTUM
ALGORITHM,” the entire contents of which are hereby

incorporated herein by reference.

BACKGROUND

Quantum computing may solve certain problems much
faster than classical devices. Examples of such problems
include Shor’s algorithm, unstructured search problems, and
simulation of quantum mechanical systems. The crossover
point at which the choice of quantum algorithm versus
classical algorithm changes i1s based on the implementation
details of the functions being implemented by the quantum
circuits corresponding to the quantum algorithm.

SUMMARY

In one example, the present disclosure relates to a pro-
cessor-implemented method for performing an evaluation of
a polynomial corresponding to an mput. The method may
include determining a polynomial interpolation for a set of
sub-intervals corresponding to the mput. The method may
turther iclude constructing a quantum circuit for performs-
ing, 1n parallel, polynomial evaluation corresponding to each
of the set of sub-intervals.

In another example, the present disclosure relates to a
processor-implemented method for performing an evalua-
tion of a polynomial corresponding to an input. The method
may include determining a polynomial interpolation of an
initial degree d for an 1nitial set of sub-intervals correspond-
ing to an mput. The method may further include determining
whether a required target precision 1s achievable based on
the imitial degree d and the set of sub-intervals. The method
may further include 1f the target precision 1s achievable, then
constructing a quantum circuit for performing, 1n parallel,
polynomial evaluation corresponding to each of the set of
sub-intervals. The method may further include if the target
precision 1s not achievable, then either incrementing the
initial degree d or subdividing the initial set of subintervals
into additional intervals until the target precision 1s achiev-
able and then constructing the quantum circuait.

In yet another example, the present disclosure relates to a
processor-implemented method for performing an evalua-
tion of a polynomial corresponding to an input. The method
may 1include for each interval of a set of sub-intervals
corresponding to the mnput, determining whether to perform
the evaluation of the polynomial 1n a first mode or a second
mode. The method may further include, 1n the first mode,
performing the evaluation of the polynomial by: determinming
a polynomial interpolation of at most degree d for a first
subset of the set of sub-intervals corresponding to the mput,
and constructing a quantum circuit for performing polyno-
mial evaluation corresponding to each of the first subset of
the set of sub-intervals. The method may further include, in
the second mode, performing the evaluation of the polyno-
mial using Newton’s method for a second subset of the set
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2

of sub-intervals corresponding to the input, wherein the
second subset 1s different from the first subset.

This Summary 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter. Furthermore, the
claimed subject matter 1s not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s illustrated by way of example
and 1s not limited by the accompanying figures, 1n which like
references indicate similar elements. Elements 1n the figures
are 1llustrated for simplicity and clarity and have not nec-
essarily been drawn to scale.

FIG. 1 shows a parallel polynomial evaluation circuit 1n
accordance with one example;

FIG. 2 shows a circuit for computing the label register 1
in accordance with one example;

FIG. 3 shows a flow chart of a method for performing an
evaluation of a polynomial corresponding to an iput 1n
accordance with one example;

FIG. 4 shows a flow chart of another method for perform-
ing an evaluation of a polynomial corresponding to an 1mput
in accordance with one example;

FIG. 5 shows a flow chart of another method for perform-
ing an evaluation of a polynomial corresponding to an 1mput
in accordance with one example;

FIG. 6 shows a tflow chart of another method for perform-
ing an evaluation of a polynomial corresponding to an mput
in accordance with one example;

FIG. 7 shows an example system environment for imple-
menting the methods described in the present disclosure;

FIG. 8 shows absolute errors of an mverse square root
function before tuning the constants 1n accordance with one
example;

FIG. 9 shows absolute errors of an inverse square root
function after tuning the constants in accordance with one
example;

FIG. 10 shows absolute errors of a reversible implemen-
tation of the arcsine function in accordance with one
example;

FIG. 11 shows a circuit for the n-th Newton iteration of
computing of the inverse square root of a variable 1n
accordance with one example; and

FIG. 12 shows absolute errors of a reversible implemen-
tation of the square root function for a certain number of
Newton iterations in accordance with one example.

DETAILED DESCRIPTION

Examples described 1n this disclosure relate to evaluating,
quantum computing circuits in view of the resource costs of
a quantum algorithm. Certain examples relate to the problem
of implementing numerical operations on a quantum com-
puter. Such operations arise, for instance, 1n the implemen-
tation of classical functions on a superposition of inputs and
are omnipresent in the quantum algorithm literature. One
example case 1s the computation of amplitudes from a given
subroutine specification. In this case, a need for computing
arcsine functions or arcsine functions composed with a
square root function arises. In order to facilitate implemen-
tation of numerical operations, their testing, and estimation
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of resource requirements, a quantum soitware module 1s
implemented. This module allows one to automatically
generate quantum circuits for evaluating piecewise smooth
functions of inputs that are given 1n the computational basis.
The present disclosure provides details of this module and

provides resource estimates for some often-encountered
classical functions such as Gaussians, tan h (hyperbolic
tangent), and sine/cosine. In addition, the present disclosure
describes implementations of mverse square root and arc-
sine, which may also be used 1n quantum chemistry and
machine learning applications. The provided cost estimates
might help to identity and address bottlenecks in future
quantum applications. One technique relates to triaging
inputs into subintervals, which are evaluated using a circuit
for parallel polynomial evaluation.

Certain examples address the implementation of numeri-
cal functions such as 1/x, 1/sqrt(x), arcsin(x), sin(x), tan
h(x), and 1n general the implementation of smooth functions
via a piece-wise polynomial approximation, followed by
functions that are used 1n specific applications. Some
examples combine the evaluation scheme for smooth func-
tions with the mverse square root, which 1s for instance,
applicable to the case of implementation of arcsin(x). Hav-
ing reversible implementations of these functions available
enables more detailed cost analyses of various quantum
algorithms such as the HHL algorithm for matrix inversion.
Other use cases arise 1 Quantum Metropolis sampling,
(G1bbs state preparation and 1n the widely applicable frame-
work of Quantum Rejection Sampling to transform one or
more samples of a given quantum state 1nto a quantum state
with potentially different amplitudes, while maintaining,
relative phases.

Further applications of numerical functions can be antici-
pated 1n the quantum machine learning, e.g., threshold
functions that need to be evaluated on a superposition of
values, e.g., tan h(x) or sigmoid functions. In addition, 1//X
can be used, e.g., for (re-normalization of intermediate
results. In quantum algorithms for chemistry {further
examples for numerical functions arise, e.g., for on-the-tly
computation of the one- and two-body integrals. There, 1/VX
as well as the evaluation of smooth functions such as
Gaussians 1s needed, and on-the-fly computation of finite
clement matrix elements often involves the evaluation of
smooth functions such as sin(x) and cos(x).

A basic scheme to evaluate a single polynomial on a
quantum computer i the computational basis 1s the classical
Homer scheme, which evaluates:

by iteratively performing a multiplication by x, followed by
an addition of a, for i€{d, d-1,
performing the following operations:

adx+ad_l| 3 adx2+ad_lx+ad_2

2 a %+ ... +a,

A reversible implementation of this scheme may simply
store all intermediate results. At iteration 1, the last iterate
y._, 1s multiplied by x 1into a new register y,, followed by an
addition by the constant a,. Due to the linear dependence of

, 0}. This may include °
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successive iterates, a pebbling strategy can be employed 1n
order to optimize the space/time trade-ofls according to
some chosen metric.

Oftentimes, the degree d of the minimax approximation
over a domain £2 must be chosen to be very high in order to

achieve a certain L_(£2)-error. In such cases, it makes sense
to partition €2, 1.e., find €, such that

M
Q:UQE,QI-[’]QJ=Q)VE¢},
=0

and to then perform a case distinction for each input,
evaluating a different polynomial for x&€2, than tor y&L2, 1t
1=]. A straight-forward generalization of this approach to the
realm of quantum computing would loop over all subdo-
mains &2, and, conditioned on a case-distinction or label
register 1, evaluate the corresponding polynomial. Thus, the
cost of this ineflicient approach grows linearly with the
number of subdomains.

In order to improve upon this approach, one can paral-
lelize the polynomial evaluation it the degree d 1s constant
over the entire domain €2. FIG. 1 shows a parallel polyno-
mial evaluation circuit 100 1n accordance with one example.
NEXT 112 changes the register to hold the next set of
coeflicients (in superposition) Z,11) la;,_, ) H> Z,I1} la, ;) . 110
and ADD 114 perform a multiplication and an addition,
respectively. The small triangle indicates the output of the

ADD 114 and MUL 110 gates. In this example, merely
adding the label register 1 mentioned above and performing:

yr ) 01 D 1y ) lag ) 1) (1)
>y, xag, ) lag) 1) 2)

> 1,0 10) 12) (3)

enables the evaluation of multiple polynomials 1n parallel.
The 1mpact on the circuit size 1s minor. This 1s because, 1n
this example, the depth of the circuit remains unaltered,
since the imitialization step (1) can be performed while
multiplying the previous iterate by y,_, by x; see FIG. 1. An
illustration of the circuit for computing the label register |
can be found in FIG. 2. The LABEL gate 210 (additional
details in 220) initializes the label register 11), which con-
sists of |log,(M)| qubits, to indicate the subdomain €, to
which x belongs. P, (e.g., P, 230, P, 232, and P,, 234)
computes the predicate indicating whether x&€2, 1nto the
ancilla qubit. Conditioned on this result, the label 1s then
initialized to the value chosen to represent the 1-th interval.
The purpose of the SET blocks 222, 224, 226 1s to create 1n
the label register a particular bit-pattern that corresponds to
the specific label that 1dentifies the subdomain £2, to which

X belongs. To this end, the SET blocks 222, 224, 226 consist
of bit-tlip operations that tlip the baits of the bit-pattern

5 corresponding to the subdomain £2, when starting from the

all-zero-bit pattern. A slight drawback of this parallel evalu-
ation 1s that 1t requires one extra ancilla register for the last
iteration, since the m-place addition circuit can no longer be
used. The small overhead of using many intervals results in
good approximations already for low-degree polynomials
(and thus using few qubit registers).

Using reversible pebble games, 1t 1s possible to trade the
number of registers needed to store the iterates with the
depth of the resulting circuit. The parameters are: the
number n of bits per register, the total number m of these
n-qubit registers, the number r of Homer iterations, and the
depth d of the resulting circuit. The trade-space we consider
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involves m, r, and d. In particular, the optimal circuit depth
for a fixed number m of registers and a fixed number r of
iterations 1s determined. In one example, dynamic program-
ming 1s used to construct the optimal strategies as the
dependency graph 1s just a line which 1s due to the sequential
nature of Homer’s method. The optimal number of pebbling,
steps as a function of m and r can be found 1n Table 1 below.

TABLE 1
m'r 1 2 3 4 5 6 7 8 16 32 64
1 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0
2 3 o o0 oo 0 o o0 o0 <N ¢
3 3 5 g o0 o0 o0 o o0 c+B v
4 3 35 7 11 15 19 25 o w ©w
3 3 5 7 9 13 17 21 71 o @ ®
6 3 35 7 9 1] 15 19 51 193
7 3 5 7 9 13 749 145 531
8 3 5 7 9 13 5 47 117 369

In order to enable automatic compilation of a classical
oracle used 1n a quantum algorithm, certain examples use the
Remez algorithm as a preferred embodiment to obtain a
piece-wise polynomial approximation, which can be imple-
mented using a quantum circuit for parallel polynomial
evaluation. This allows one to triage inputs nto different
sub-intervals and to apply the parallel polynomial evaluation
for diflerent polynomials, depending on the particular sub-
interval the mput x falls mto. This method works for
superposition of mput x also.

FIG. 3 shows a flow chart for implementing an evaluation
of a polynomial on a quantum computer with a given set of
intervals and a given degree. Step 310 may include receiving
an mput, including a function 1, an nterval subdivision of
input, and a maximal degree d. A system (e.g., quantum
computing system 710 of FIG. 7) may include access to at
least one classical algorithm for polynomial interpolation
and quantum circuit libraries for integer arithmetic.

Step 320 may include determining the best polynomial of
degree at most d on each interval using an algorithm for
polynomial evaluation. In one example, the Remez algo-
rithm may be used to determine a piecewise polynomial
approximation. In order to enable automatic compilation of
a classical oracle used 1 a quantum algorithm, the Remez
algorithm can be used 1 a subroutine to determine a
piece-wise polynomial approximation, which can then be
implemented using the circuit described later.

In particular, the oracle may be implemented with a given
precision, accuracy, and number of available quantum reg-
isters (or, equivalently, the polynomial degree d) over a
user-specified mterval €2=[a, a+L). The example algorithm
proceeds as follows: 1n a first step, run the Remez algorithm
which, given a function f(x) over a domain Q< R and a
polynomial degree d, finds the polynomial P(x) which
approximates f(x) with minimal L_(£2)-error, and check

whether the achieved error 1s low enough. I 1t 15 too large,
reduce the size of the domain

£y = [{1, a + g )
and check again.

Repeating this procedure and carrying out binary search
on the right interval border will eventually lead to the first
subdomain £2,=[a, b,) with the corresponding degree d
polynomial achueving the desired accuracy on £2,. Next, the
next subdomain £2,=[b,, b,) 1s determined using the same
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procedure. This 1s 1terated until b,zb, meaning that all
required subdomains and their corresponding polynomials
have been determined and f(x) can be implemented using a
parallel polynomial evaluation circuit. This algorithm was
implemented and then run for various functions, target
accuracies, and polynomial degrees 1n order to determine
approximate resource estimates for these parameters.

In one example, the Remez algorithm may be imple-
mented using the circuit in FIG. 1. As explained earlier, the
circuit n FIG. 1 may perform parallel evaluation of a
polynomial. The MUL box 110 and the ADD box 114 may
perform a multiplication and an addition, respectively. The
small black triangles in FIG. 1 indicate the output of the
ADD and MUL gates, respectively. Referrning still to FIG. 1,
the NEXT  block 112 changes the register to hold the next
set of coellicients (in superposition). FIG. 2 may be used to
label the coetlicients to indicate the subdomains 1n which an
input X belongs. In this example, the subdomain may be a
superset of the intervals.

Table 2 below provides example code corresponding to a
function to implement the Remez’s algorithm to find a
polynomial for a given interval. The code also includes a
function to subdivide an interval into subintervals.

TABLE 2

import math
import numpy as np
from matplotlib import pyplot as pit
# returns n chebyshev nodes on the interval (a,b)
def getChebyshevNodes(n, a, b):
nodes = [.3%(a+b) + .53%(b—a)*math.cos((2*k+1)/(2.*n)*math.pi1) fork in
range (n)]
return nodes
# returns the error on given nodes of a polynomial with coeflicients
polycoell
# approximating the function with function values exactvals (on these
nodes).
def getErrors(exactvals, polycoefl, nodes):
ys = np.polyval(polycoetl, nodes)
for 1 1n range(len(ys)):
ys[1] = abs(ys[i]-exactvals[i])
return ys
# returns the coeflicients of a polynomial of degree d approximating the
function fun over the interval (a,b)
# actually, cn2 should be chosen adaptively but for most functions this
works just fine.
def RunRemez(fun, a, b, d = 5, odd_or even=False, even = False, tol =
l.e—13):
finished = False
cn = getChebyshevNodes(d+2, a, b)
cn2 = getChebyshevNodes(50*d, a, b)
it =0
while not finished and len{cn)==d+2 and 1t < 50:
it +=1
b = np.array([fun(c) for ¢ in cn])
A = np.matrix(np.zeros([d+2,d+2]))
for 1 1 range(d+2):
X = 1.
if odd_or_even and not even:
X *= cn[1]
for | in range(d+2):
Al ] =x
X *= cn[1]
if odd_or_even:
X *= cn[1]
AlL, -1] = (-1)**(1+1)
res = np.linalg.solve(A, b)
revlist = list(reversed(res[0:—1]))
sccoefl = [ ]
for ¢ in revlist:
sccoefl.append(c)
if odd_or_even:
sccoefl.append(0)
if even:
sccoefl = sccoefl[0:—1]
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TABLE 2-continued

errs = getBErrors([fun(c) for ¢ 1n cn2], sccoell, cn2)
maximum_indices = [ ]
if errs[O]>errs[1]:
maximum_indices.append(0)
for 1 1n range(l.len{errs)-1):
if errs[i]>errs[i—1] and errs[i]>errs[1+1]:
maximum_indices.append(1)
if errs[-1]>errs[-2]:
maximum_ndices.append(-1)
finished = True
for 1dx 1n maximum_indices[1:]:
if abs(errs[idx]-errs[maximum_indices[0]]) > tol:
finished = False
cn = [cn2[1] for 1 in maximum_indices]
return (max(abs(errs)),sccoell)
# Partitions the interval [a,b] and approximates the function 1
# using piecewlse minimax polynomial approximation of degree d and
Max. error eps
# The function roundIntervalBorder can modify the right border of the
interval
# e.g., round it to a specific #bits
def RunPartitioning({, a, b, d, eps, roundIntervalBorder, Odd, Even):
A = [roundIntervalBorder(a)]
coefls = [ ]
numlntervals = 0O
while A[-1] < roundIntervalBorder(b)-1.e-14:
a = A[numlIntervals]
deltal. = (roundIntervalBorder(b) — a)*.5
L. = roundIntervalBorder(b) — a
while deltal. > 1.e-12:
if roundIntervalBorder(a + L) — a < l.e-14:
raise RuntimeError(“roundIntervalBorder rounded interval
length to zero! Please decrease epsilon or increase the resolution of the
interval borders.”)
err, coefl = RunRemez({, a, roundIntervalBorder{a + L), d, Odd
or Even, Even, l.e-14)
if err > eps:
L —= deltalL
elif a+L < roundIntervalBorder(b):
L += deltalL
else:
L. = roundIntervalBorder(b)-a
deltal. *= 0.5
coells.append(coefl)
A.append(roundIntervalBorder(a + L))
numlIntervals += 1
return A[O:numlntervals+1], coeils
# Function to plot the resulting partitioning
def PlotApproximation(f, A, coefls):
numsteps = 100
nodes = [ |
approx_y = | |
for 1 1n range(len(A)-1):
curvalues = [A[1](A[1+1]-A[1])*k/numSteps for k in
range(numSteps) |
approx_y.extend(np.polyval(coefls[i], curvalues))
nodes.extend{curvalues)
ys = [{(x) for X in nodes]| # exact values
yerrs = [abs(ys[i]-approx_y/[1]) for 1 1n range(len(ys))]
plt.plot(nodes, yerrs)
plt.yscale(*log’)
plt.show( )
if_ name ==°_main_""
HHHHH AR
# Let’s test the implementation:#
HHH A AT
detf 1(x):
return math.exp(—x)
err = l.e-7
Odd = False
Even = False
a=0.0
b = —math.log(err) #math.p1/2
A, coefls = RunPartitioning(f, a, b, 5, err, lambda x: x, Odd, Even)
print(“Segments: { }”.format(len(A)))
for 1 1n range(len(A)-1):
print(*{ }.,{ }):\t{ }”.format(A[i], A[i+1], coeffs[i]))
PlotApproximation(f, A, coefls)

kk

10

15

20

25

30

35

40

45

50

55

60

65

8

Step 330 may include determining the overall precision
that 1s achievable for any iput that falls mto any interval.
Step 340 may include constructing a quantum circuit for
parallel polynomial evaluation of polynomials on each sub-
interval. After all of the subdomains and the corresponding
polynomials have been determined, 1{(x) may be imple-

mented using the parallel polynomial evaluation circuit
shown 1n FIG. 2.

Step 350 may include generating an output, including a
quantum circuit for function evaluation of {.

FIG. 4 shows a flow chart for implementing an evaluation
of a polynomial on a quantum computer with a target
precision epsilon and an interval subdivision of the input.
Thus, unlike the method described with respect to FIG. 3, 1n
this method the maximal degree of precision 1s not specified
a priori. Thus, as part of this example method, the degree of
the polynomial 1s incremented by 1 each time until the target
precision 1s achueved. Step 410 may include recerving an
input, including a function 1, a target precision epsilon, and
an interval subdivision of mput. A system (e.g., quantum
computing system 710 of FIG. 7) may include access to at
least one classical algorithm for polynomial interpolation
and quantum circuit libraries for integer arithmetic. Step 420
may include starting with a degree d=0 of the polynomuaal.

Next, step 430 may 1nclude determining the best polyno-
mial interpolation of degree at most d on each interval using,
an algorithm for polynomial evaluation. In one example, the
Remez algorithm may be used to determine a piecewise
polynomial. In one example, the Remez algorithm may be
implemented using the circuit i FIG. 1.

Next, step 440 may include determining whether a target
precision 1s achievable. If not, then the degree of the
polynomial may be incremented by 1, as shown 1n step 450.
If yes, then step 460 may include constructing a quantum
circuit for polynomial evaluation of each polynomial on
cach subinterval. After all of the subdomains and the cor-
responding polynomials have been determined, 1(x) may be
implemented using the parallel polynomial evaluation cir-
cuit shown 1n FIG. 1.

Next, step 470 may include generating an output, includ-
ing a quantum circuit for evaluation of the function T.

FIG. 5 shows a flow chart for implementing an evaluation
of a polynomial on a quantum computer with a target
precision epsilon and a maximal degree d. Thus, unlike the
method described with respect to FIG. 1, in this method the
sub intervals are not known. Thus, as part of this example
method, the intervals are subdivided until the target preci-
sion 1s achieved. Step 510 may include receiving an mput,
including a function 1, a target precision epsilon, and an
interval subdivision of input. A system (e.g., e.g., quantum
computing system 710 of FIG. 7) may include access to at
least one classical algorithm for polynomial interpolation
and quantum circuit libraries for integer arithmetic. Step 520
may include starting with a degree d=0 of the polynomual.

Next, step 330 may include determining the best polyno-
mial interpolation of degree at most d on each interval using
an algorithm for polynomial evaluation. In one example, the
Remez algorithm may be used to determine a piecewise
polynomial approximation. In one example, the Remez
algorithm may be implemented using the circuit in FIG. 1.
The circuit 1n FIG. 1 may perform parallel evaluation of a
polynomial. As described earlier, the MUL box 110 and the
ADD box 114 may perform a multiplication and an addition,
respectively. The small black triangles in FIG. 1 indicate the

output of the ADD and MUL gates, respectively. Referring
still to FIG. 1, the NEXT | block 112 changes the register to
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hold the next set of coeflicients (in superposition). As Next, step 340 may include determining whether a target
explained earlier, the circuit for labeling shown 1n FIG. 2 precision 1s achievable. If not, then the intervals may be
may be used to label the coeflicients to indicate the subdo- further subdivided, as shown 1n step 350. Table 3 below
mains 1 which an mput x belongs. In this example, the provides an example of code for interval partitioning func-
subdomain may be a superset of the intervals. tions, such as sin(x), arcsin(x), tan h(x), exp(x) efc.
TABLE 3
import math

import numpy as np
from matplotlib import pyplot as pit
from IntervalPartitioner import *
def run_gaussian(eps, deg):
def {(x):
return math.exp(-x*x)
Odd = False
Even = True
a=10
b=>3
A, coefls = run_fun({, a, b, deg, eps, Odd, Even)
return len(A)
def run_tanh(eps, deg):
def {(x):
return math.tanh(x)
Odd = True
Even = False
a=0
if eps > 3.e-6:
b=7
elif eps > 3.e-8:
b=9
else:
b=10
A, coefls = run_fun(f, a, b, deg, eps, Odd, Even)
return len(A)
def run_sin(eps, deg):
def {(x):
return math.sim(x)
Odd = True
Even = False
a=70
b = math.p1/2.
A, coefls = run_fun(f, a, b, deg, eps, Odd, Even)
return len(A)
def run_fun({, a, b, deg, eps, Odd, Even):
A, coeffs = RunPartitioning({, a, b, deg, eps, lambda x: x, Odd, Even)
#PlotApproximation(f, A, coeils)
return A, coefls
def run_arcsin(eps, deg):
def {(x):
return math.asin(x)
Heps = l.e—7
a=10
b=0.5
#tdeg = 4 # polynomial degree to use
p = math.log(b,2) # point position
A, coefs = run_fun({, a, b, deg, eps, True, False)
return len(A)
def run_exp(eps, deg):
def {(x):
return math.exp(-x)
Heps = l.e—7
a=70
b = —math.log(eps)
#tdeg = 4 # polynomuial degree to use
p = math.log(b,2) # point position
A, coefls = run_fun(t, a, b, deg, eps, False, False)
return len(A)
PlotApproximation(f, A, coeils)
print(“Can do it using { }intervals:”.format(len(A)))
print(A)
print(*“‘nCoeflicients:”)
print(coeils)
num = len(A) # number of intervals
n = int(math.ceil{math.log(1./eps, 2.)) + p + 8)
qubits = mt((deg+1)*n + math.ceil(math.log(num,2.)))
d = deg+1
toffolis = int(math.cell{1.5*n**2*d + 3*n*p*d + 3.5%n*d - 3*p**2*d
+3*p*d - d + 2*num*d*(4*math.ceil(math.log(num,2))-8) +4*num®*n))
print(“\n\n***Estimates:***\nToffolis: { }'\nQubits:
{ 17 format(toffolis,qubits))
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TABLE 3-continued
if name == main '’
#run_exp( )
Hexit( )

detf cols(num_ at):
return “ &”*(6-num_at) + VWA
epsilons = [10.%*%(=5), 10.%*(=7), 10.**%(-9)]
tex_epsilons = ['$107{-5}$°, “$10°{-7}$", ‘$107{-9}$’]
degrees = [3, 4, 5, 6]
print(**Func\tEpsilonitdegitnum_ intervals™)
functions = [run_tanh, run_gaussian, run_sin, run_exp, run_arcsin|
functionname = [*$\tanh(x)$’, “vexp(-x"2)$’, $isin(x)$’, ‘$vexp(-
x)$7, $arcsin(x)$’]
pointpositions = [8, 7, 3, 0, O]
for 1 1n range(len(functions)):
print(*{ }{ }”.format(functionname[i], cols(1)))
fun = functions|[i]
for e in range(len(epsilons)):
eps = epsilons[e]
if 1 <= 2:
p = pointpositions|i]
elif 1 == 3:
p = math.log(—-math.log(eps), 2)
elif 1 ==
assert functionname[i] == ‘$Varcsin(x)$’
p=1
print(“& { }{}”.format(tex_epsilons[e], cols(2)))
for deg in degrees:
num = fun(eps, deg)
n = int(math.ceil{math.log(1./eps, 2.)) + p + §)
qubits = mt((deg+1)*n + math.ceil{math.log(num,2.)))
d = deg+1
toffolis = int(math.cell(1.5*n**2*d + 3*n*p*d + 3.5*%n*d -
3Fp**2*d + 3*p*d - d + 2Fnum*d*(4*math.ceil(math.log{num,2))-8)
+4*num™*n))

12

print(“& & { } & { } & { } & { P\ .format(deg, num, qubits, toffolis))

If yes, then step 560 may include constructing a quantum
circuit for polynomial evaluation of each polynomial on
cach subinterval. After all of the subdomains and the cor-
responding polynomials have been determined, {(x) may be
implemented using the parallel polynomial evaluation cir-
cuit shown 1n FIG. 2.

Next, step 570 may include generating an output, includ-
ing a quantum circuit for evaluation of the function T1.

While FIGS. 3-5 describe methods for polynomial inter-
polation of certain quantum algorithms or functions, there
are other functions that may require implementation using a
Newton 1iteration. As an example, functions such as mverse
square root may be better evaluated using a method like the
Newton-Raphson method. In addition, for certain functions
the evaluation may be better performed using the polyno-
mial interpolation described with respect to FIG. 3 for
certain intervals; but for other intervals the evaluation may
be better performed using the Newton-Raphson method.

FIG. 6 shows a flow chart or implementing evaluation of
a polynomial on a quantum computer based on given
intervals, using polynomial interpolation or Newton’s
method depending upon the interval. In step 610, an nput,
including a function 1, target precision epsilon, and intervals
subdividing the input may be received. A classical algorithm
for polynomial interpolation as well as a quantum circuit

library to implement basic arithmetic operations such as
ADD and MUL can be provided in step 615.

In step 620, for each interval, a system (e.g., quantum
computing system 710 of FIG. 7) may determine whether to
interpolate or apply Newton’s method.

In step 630, the system may evaluate whether with respect
to the next interval, interpolation or Newton’s method
should be used. In the case of interpolation, as part of step
640, a quantum circuit for the polynomial evaluation may be
determined. Any of the techniques described earlier may be
used as part of this step.
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In the case of application of the Newton-Raphson method,
in step 6350, the number of rounds of Newton’s method may
be determined. Next, in step 660, an 1mitial constant for the
Newton’s method may be determined. Next, 1n step 670, a
space-optimized circuit for the Newton’s method may be
constructed. This step may include access to an application
ol a pebbling strategy to reversibly compute programs with
linear dependency graphs 665. In one example, as part of the
Newton-Raphson method, the pebbling technique may be
used to conserve space while using the parallel polynomaial
circuit shown in FIG. 1. The results of the multiply and add
operations continue to accumulate over time and can use up
a large amount of space. The pebbling technique may be
implemented by selecting a suitable number of pebbles. As
an example, 1n an 1nstance where there are eight pebbles, 64
rounds of the Newton-Raphson method may be imple-
mented and there will be an overhead of 369. Additional
details for implementing the pebbling strategy as part of the
parallel polynomial circuit use are described previously with
respect to Table 1.

Once all of the mtervals are completed, as determined 1n
step 680, the output, including the circuit for approximation
of function 1, may be provided.

FIG. 7 shows an example system environment for imple-
menting aspects of the technology and the methods
described 1n the present disclosure. System environment
includes a quantum computing system 710 and a classical
computing system 730, which 1s coupled to a remote com-
puter 750. Quantum computing system 710 consumes the
quantum circuits generated using the classical computing
system 730. Quantum computing system 710 may include a
quantum processor 712 and measuring/monitoring devices
714. In one example, quantum processor 712 and measuring/
monitoring devices 714 may be configured to operate in a
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cryogenic environment (e.g., between 4 Kelvin and 77
Kelvin) such that quantum processor 712 may perform
superconducting operations. (Quantum processor 712 may
execute quantum circuits that are compiled by classical
computing system 730. The compiled quantum circuits may
be communicated to quantum processor 712 via bus 706.

With continued reference to FIG. 7, classical computing
system 730 may include communication interface(s) 732,
classical processor 734, and memory 736. Memory 736 may
include a compiler unit 738 including libraries and other
programs or code to compile a high-level description of a
quantum algorithm into quantum circuits. Compiler unit 738
may further mnclude programs or code to execute the steps
described with respect to FIGS. 3-5. Thus, compiler unit 738
may include programs or code that when executed by
classical processor 734 may perform the various methods
described with respect to the present disclosure. In one
example, the code shown in Tables 1, 2, and 3 may be stored
in memory 736 ecither as part of compiler unit 738 or
separately. The high-level description of the quantum algo-
rithm may be stored in memory 736 or in memory 752,
which 1s associated with remote computer 750.

For quantum chemistry or machine learning applications,
non-smooth functions are also required. As an example, the
inverse square root can be used i both examples, namely for
the calculation of the Coulomb potential and to determine
the reciprocal when employing HHL for quantum machine
learning.

In classical computing, mverse square roots appear in
computer graphics and the term “fast inverse square root” 1s
often used: 1t labels the procedure to approximate the inverse
square root using bit-operations on the floating-point repre-
sentation of the input. The code ultimately performs a
Newton-Raphson 1teration in order to improve upon a pretty
accurate 1mitial guess, which 1t finds using afore-mentioned
bit-operations. Loosely speaking, the bit-operations consist
of a bit-shift to divide the exponent by two in order to
approximate the square root, followed by a subtraction of
this result from a magic number, ellectively negating the
exponent and correcting the mantissa, which was also
shifted together with the exponent. The magic number can
be chosen using an auto-tuning procedure and varies
depending on the objective function being used. This pro-
vides an extremely good 1nitial guess for the Newton 1tera-
tion at very low cost.

In an example implementation, a similar procedure 1s
used to compute the mverse square root using fixed-point
arithmetic. While the floating-point representation i1s not
used, a low-cost mitial guess 1s found, which allows for a
small number of Newton iterations to be suflicient (1.e., 2-4
iterations). This includes determining the position of the first
one in the bit-representation of the put, followed by an
initialization which mvolves a case distinction on the magic
number to use. The three constants were tuned such that the
error peaks near powers of two 1 FIG. 8 vanish. The peaks
appear due to the fact that the iitial guess takes 1nto account
the location of the first one but completely 1gnores the actual
magnitude of the input. For example, all inputs 1n [1,2) yield
the same 1nitial guess. The error plot with tuned constants 1s
depicted 1n FIG. 9. The errors were evaluated for N=2000
(equidistant) points 1n the interval
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5] using m&{2,3,4} Newton iterations and corresponding bit
sizes n©{25,35,54}. The fixed-point position is p=12, in
order to ensure that no overtlow occurs for small inputs. One
can clearly observe that an entire Newton iteration can be
saved when aiming for a given L__-error.

Arcsine may be implemented as a combination of poly-
nomial evaluation and (1inverse) square root. Approximating
the arcsine using only a polynomial allows for a good
approximation in [0,0.5], but not near 1 (where 1t diverges).
The Cephes math library may remedy this problem by
adding a case distinction, employing a “double-angle 1den-
tity”” for x=0.3. This may require computing the square root,

which can be achieved by first calculating the mnverse square
root, followed by

A resulting error plot from the implementation of the arcsine
function 1s shown 1n FIG. 10, which 1s on [0,1] for N=2000
points of the example reversible implementation of the
arcsine using m&{3,4,5} Newton iterations for calculating
the 1nverse square root. The fixed-point position 1s chosen to
be p=2 and total bit size n was chosen to be in {35,50,55}.
The oscillations stem from the minimax polynomial which
1s used to approximate the arcsine on [0,0.5].

Note that certain applications may allow to a trade-off
between the error in the arcsine with, e.g., probability of
success by rescaling the input such that the arcsine needs to
be computed only for values 1 [0,0.5]. This would allow one
to remove the case-distinction and the subsequent calcula-
tion of the square root. As a result, one could evaluate the
arcsine at a cost that 1s similar to the implementation costs
of sin/cos. Estimates for the Tofloli and qubit counts for this
case are shown 1n Table 4 below.

TABLE 4
Number of
Polynomial = Number of  Number of Toflol1
Function L error degree subintervals qubits gates
arcsin(x)
107>
3 2 105 4872
4 2 131 6038
5 2 157 7204
6 2 183 8370
1077
3 3 134 7784
4 2 166 9419
5 2 199 11250
6 2 232 13081
1077
3 6 159 11264
4 3 197 13138
5 3 236 15672
6 2 274 17938

In fixed-point arithmetic, one represents numbers X using,
n bits as

where x,£{0,1} is the i-th bit of the binary representation of
X, and the point position p denotes the number of binary
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digits to the left of the binary point. We choose both the total
number of bits n and the point position p to be constant over
the course of a computation. As a consequence, over- and
underflow errors are introduced, while keeping the required
bit-size from growing with each operation.

Unless 1indicated otherwise, a fixed-point addition imple-
mentation 1s used, which keeps the bit-size constant. This
amounts to allowing over- and undertlow, while keeping the
registers from growing with each operation. Multiplication
can be performed by repeated-addition-and-shiit, which can
be seen from

xy=x, 2" v+ L 4+x2%

where x=2x.2" with x,£{0,1} denotes the binary expansion
of the n-bit number x. Thus, for i€4{0, . . ., n-1}, 27"y
1s added to the result register (which 1s mitially zero) it x =1.
This can be implemented using n controlled additions on 1,
2, ..., n bits 1f one allows for pre-truncation. Instead of
computing the 2n-bit result and copying out the first n bits
before uncomputing the multiplication again, the additions
can be executed on a subset of the qubits, 1gnoring all bits
beyond the scope of the n-bit result. Thus, each addition
introduces an error of at most

a factor n larger than using the costly approach mentioned
above.

Negative multipliers are dealt with by substituting the
controlled addition by a controlled subtraction when condi-
tioming on the most significant bit because 1t has negative
weight w,, .=2""' in two’s-complement notation. The
multiplicand 1s assumed to be positive throughout, which
removes the need for conditional mmversions of mput and
output (for every multiplication), thus tremendously reduc-
ing the size of circuits that require many multiplications
such as, e.g., polynomial evaluation.

The square of a number can be calculated using the same
approach as for multiplication. Yet, one can save (almost) an
entire register by only copving out the bit being conditioned
on prior to performing the controlled addition. Then the bit
can be reset using another CNOT gate, followed by copying
out the next bit and performing the next controlled addition.
The gate counts are i1dentical to performing

x)10)10) > 1x) 1x)10) F> 1x) 1x) 1:2)
x) %) 10},

while allowing to save n—1 qubits.

Next, resource estimates for polynomial evaluation are
described. The evaluation of a degree d polynomial requires
an 1mtial multiplication a _x, an addition of a, ,, followed
by d-1 multiply-accumulate instructions. The total number
of Toflol1 gates 1s thus equal to the cost of d multiply-
accumulate 1instructions. Furthermore, d+1 registers are
required for holding intermediate and final result(s) 1f no
in-place adder 1s used for the last iteration (and no non-
trivial pebbling strategy 1s applied). Other strategies may be
employed 1n order to reduce the number of ancilla registers,

16

at the cost of a larger gate count, see Tables 5-8 for examples
of resource estimates for a number of functions.

TABLE 5
5
Number of
Polynomial  Number of  Number of Toflol1
Function L. degree subintervals qubits gates
107>
3 15 136 12428
4 9 169 13768
5 201 15492
3 6 5 234 17544
1077
3 50 166 27724
4 23 205 23095
5 14 244 23570
50 g 6 10 284 26037
10~
3 162 192 77992
4 59 236 41646
5 30 281 35460
6 19 327 36578
25
TABLE 6
320 Number of
Polynomial  Number of Number of  Toffoli
Function L., error degree subintervals qubits gates
esp(—x?)
107>
15 3 11 132 10884
4 7 163 12141
5 5 195 14038
6 4 226 15863
1077
3 32 161 20504
4 15 199 19090
40 5 10 238 21180
6 7 187 23254
1077
3 97 187 49032
4 36 231 32305
5 19 275 30234
45 6 12 319 31595
TABLE 7
50 Number of
Polynomial  Number of  Number of Toftoli
Function L error degree subintervals qubits gates
sin(x)
107>
55 3 2 132 6188
4 2 141 7679
5 2 169 9170
6 2 197 10661
10~7
3 3 142 9444
60 4 2 176 11480
5 2 211 13720
6 2 246 15960
1077
3 7 167 13432
4 3 207 15567
5 2 247 18322
63 6 2 288 21321
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TABLE 8
Number of
Polynomial ~ Number of Number of Toflol
Function L, error degree subintervals qubits gates
exp(—x)

107>
3 11 116 8106
4 6 143 8625
5 5 171 10055
6 4 198 11245

1077
3 31 149 17304
4 15 184 15690
5 9 220 16956
6 7 255 18662

107
3 97 175 45012
4 36 216 28302
5 19 257 25721
6 12 298 26452

Note that all multiplications can be carried out assuming
x>0, 1.e. X can be conditionally 1mverted prior to the poly-
nomial evaluation (and the pseudo-sign bit 1s copied out).
The sign 1s then absorbed into the coethicients. Before
adding a, into the y,_, x-register, 1t 1s inverted conditioned on
the sign-bit of X being set 11 the coethicient corresponds to an
odd power. This 1s done because it 1s cheaper to implement
a fixed-point multiplier, which can only deal with y,_, being
negative.

The Toflol1 gate count of multiplying two n-bit numbers

1S

T (. p) = Z: Teadd(n— i)+ " Teadd(n— i

p—1 : n—p
= ZI_:D 3(n—1i)+ Zf:l 3in—-1)+3n
3

2 3 2
=50 + 3np + zn—?;p +3p
if one uses the controlled addition circuit by Takahashi et al.,
which requires 3n+3 Tolloli gates to (conditionally) add two
n-bit numbers. The subsequent addition can be implemented
using the addition circuit by Takahashi et al., featuring 2n-1
Toflol1 gates. Thus, the total cost of a fused multiply-

accumulate instruction 1s

Tﬁna(n P33 2n2+3np+ i 2n—-3pl+3p—1.

Therefore, the total Tofloli count for evaluating a degree
d polynomuial 1s

{ polyind p)y=3/2n2d+y3npd+ 7/ 2nd—-3pld+3pd—d.

Evaluating M polynomials 1n parallel for piecewise poly-
nomial approximation requires only

i+ [ngM-‘
2

additional qubits (since one n-qubit register 1s required to
perform the addition 1n the last 1teration, which 1s no longer
just a constant) and

2M[log, M1

-controlled NOT gates, which can be performed in parallel
with the multiplication. This increases the circuit size by

Texn“a (MZZM(’—'I- [ngEM-l_ 8)
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Toflol1 gates per multiply-accumulate instruction, since a
k-controlled NOT can be achieved using 4(k-2) Totloli
gates and k-2 dirty ancilla qubits, which are readily avail-
able 1n this construction.

The label register 1 can be computed using 1 comparator
per subinterval by:

I=[a,a;, )ap<a;<. ..

z

“Apr-1-

The comparator stores its output into one extra qubit,
flipping 1t to 1 1if x=<a,_ ,. The label register 1s then incre-
mented from 1-1 to 1, conditioned on this output qubit still
being 0 (indicating that x>a,). Incrementing 1 can be
achieved using CNOT gates applied to the qubits that
correspond to ones in the bit-representation of (i-1)Di.
Finally, the comparator output qubit 1s uncomputed again.
This procedure 1s carried out M times for1=0, .. ., M-1 and
requires 1 additional qubit. The number of extra Totloli gates
for this label 1nitialization 1s

T aped Mn)=M-2T

CINE?

(n)=4M =,

where, as a comparator, we use the CARRY-circuit, which
needs 2n Toflol1 gates to compare a classical value to a
quantum register, and another 2n to uncompute the output
and intermediate changes to the n required dirty ancilla
qubits.

In total, the parallel polynomial evaluation circuit thus
requires

TPP(Ha da pa M) — Tpﬂ.‘f}’(na da P) + d ] TEII‘I“H(M)

+ Tiapet (M, 1)

3, / 2
=5n d+3npd+§nd—3p d+3pd—-d

+ 3Md(4log, M1 — 8) + 4Mn

Toflol1 gates and

(d + L)n +[log, M | + lqubits.
The 1mnverse square root, 1.e.,

|
f(x)—ﬁ

can be computed efliciently using Newton’s method. The
iteration looks as follows:

(13-
Antl = Apl 1 h )

where a 1s the mput and

if the 1nitial guess 1s suthiciently close to the true solution.
In some examples, finding a good 1nitial guess

1

Xo =~ ——
Va
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for Newton’s zero-finding routine 1s useful for (fast) con-
vergence. A crude approximation which turns out to be

suilicient 1s the following:

1 logna logra
L — (2'{032&)_? 2_'__322_ ~ 2{_“LJ —

Va

where

[log a

can be determined by finding the first “1” when traversing
the bit-representation of a from leit to right (MSB to LSB).
While the space requirement for X, 1s 1n

Q(log,n),

such a representation would be impractical for the first
Newton round. Furthermore, noting that the first iteration on
%=2" leads to

. k a2 (4)
X =2 1.5—7 = X,

one can directly choose this x, as the 1nitial guess.

The preparation of X, can be achieved using (n-1)+n+1
ancilla qubits, which must be available due to the space
requirements ol the subsequent Newton steps. The one
ancilla qubit 1s used as a flag indicating whether the first “1”
from the left has already been encountered. For each itera-
tion i€{n-1, . . ., 1, O}, one determines whether the bit a,
1s 1 and stores this result r, in one of the n work qubits,
conditioned on the flag being unset.

Then, conditioned on r=1, the flag 1s thipped, indicating
that the first “1” has been found. If r=1, the x,-register 1s
initialized to the value 1n (4) as follows: using CNOTs, the
Xqo-register can be iitialized to the value 1.5 shifted by

p—2i

k = ,
2

where p denotes the binary point position of the nput,
tollowed by subtracting the (3k-1)-shifted input a from x,,
which may require up to n—1 ancilla qubats.

In order to improve the quality of the first guess for
numbers close to 2° for some k&Z ., one can tune the
constant 1.5 1 ( ) 1.e., turn 1t mto a function C(k) of the
exponent k. This increases the overall cost of calculating x,,
merely by a few CNOT gates but allows to save an entire
Newton 1teration even when only distinguishing three cases,
namely

1.613, k<0 (3)
Cky:=4 1.5, k=0.
1.62, k>0
The Newton iteration may include computing x,__, from

X,, by

10

15

20

25

30

35

40

45

50

55

60

65

20

(13-
An+1 = An| L 7 )

which can be achieved as shown in Table 9 below:

TABLE 9

Compute the square of x,, into a new register.
Multiply %, by the shifted input to obtain ax */2.
Initialize another register to 1.5 and subtract ax /2.
Multiply the result by x_ to arrive at x__ .

Uncompute the three mntermediate results.

L I ot b =

The circuit of one such Newton iteration 1s depicted 1n
FIG. 11. SQR 1110 computes the square of previous iterate
X, 1nto an empty result-register, which 1s then multiplied by
the mput a (MUL 1120), followed by subtracting (SUB

1140) this intermediate result from the value 1.5 mitialized
by block 1130. Finally, the next iterate, 1.e.,

Xt = xﬂ(lj — ?]
can be computed by multiplying this intermediate result by

x, using MUL 1150. All temporary results may then be
cleared by running the appropriate operations in reversed
order (using SQR 1190, MUL 1170, SET 1180, and ADD

1160).

Therefore, for m Newton iterations, this requires m+3
n-qubit registers 1 no pebbling 1s done on the Newton
iterates, 1.e., 1f all X, are kept in memory until the last Newton
iteration has been completed.

Computing the imitial guess for the fast mverse square
root requires n controlled additions of two n-bit numbers
plus 2n Tofloli gates for checking/setting the flag (and
uncomputing 1t again). Thus, the Toflol1 count for the 1nitial
guess 1s

Linieoy =P cadiainyr2n=3r2 +5H-

Each Newton 1teration features squaring, a multiplication,
a subtraction, a final multiplication (yielding the next iter-
ate), and then an uncomputation of the three intermediate
results. In total, 5 multiplications and 2 additions are
employed (of which 2 multiplications and 1 addition are run
in reverse), which yields the Tofloli count

Tirfr(na P) — 5Tmu.{(na P) + QTadd(n)

15, 23 X
=7n +15np+7n—15p + 15p - 2.

.

The number of Toflol1 gates for the entire Newton pro-
cedure (without un-computing the iterates) for m iterations
thus reads

Tiﬂvsqﬁ(na m, P) — Tinir(n) + mTirer(”a P)

o 15 23
=N (7m+3] + 15npm+n(7m +5] —

15p%m + 15pm — 2m.

Since each Newton iteration requires 3 ancilla registers
(which are cleaned up after each round) to produce the next
iterate, the total number of qubits 1s n(m+4), where one
register holds the mitial guess x,.
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Note that this 1s an upper bound on the required number
of both qubits and Toflol1 gates. Since Newton converges
quadratically, there 1s no need to perform full additions and
multiplications at each iteration. Rather, the number of bits
n used for the fixed point representation should be an
(increasing) function of the Newton 1teration.

The square root can be calculated using

1.e., at a cost of an additional multiplication into a new
register. Note that thus new register would be required
anyway when copying out the result and running the entire
computation in reverse, 1n order to clear registers holding
intermediate results. Thus, the total number of logical qubaits
remains unchanged.

While sin (x) and cos (X) may be easily approximated
using, €.g., polynomials as described, their inverses are not.
The main difliculty arises near £1, where

darcsin(x) B 1

dx VI-x2

diverges.
Therelfore, an alternative representation of arcsin (X) for
larger values of X 1s used, e.g.,

_ T
arcsin(x) = — — arccos(x)

2

:Irr .
=5 = arcsm(\/l — x? )

Applying the double-argument identity to the last expres-
s1on yields

(6)

_ T ‘ ( l —x H
arcsin(x) = 5~ Zarcsin ,

a very uselul identity which was already used 1n a classical
math library called Cephes. The interval 1s again partitioned,
using a minimax polynomial to approximate arcsin (x) for
xe[0,0.5), and the transformation in (6) for x&[0.5,1].

The 1nverse square root implementation 1s used to com-
pute Vz for

which satisfies z&[0,0.25], for x€[0.5,1]. Therefore, the
fixed point position has to be chosen large, as the inverse
square root diverges for small x. The multiplication by x
after this computation takes care of the singularity and, since
most bits of low-significance of

1

Vx

will cause undertlow for small x, a shifted version of the
iverse square root can be computed. This optimization
reduces the number of extra bits required during the evalu-
ation of the inverse square root.
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In many applications, evaluating arcsin (x) only on the
interval [0,0.5] may be suflicient. In such cases, the cost 1s
much lower since this can be achieved using our parallel
polynomial evaluation circuit. The Tofloli counts for this
case are noted in Table 4.

In one example, the Arcsine 1s implemented as a combi-
nation of polynomial evaluation and the mverse square root
to extend the polynomial approximation on [0,0.5] to the
entire domain [0,1] employing the double-argument 1dentity
above.

First, the (pseudo) sign-bit of x 1s copied out and x 1s
conditionally 1nverted (modulo two’s-complement) to
ensure x=0. Since there are plenty of registers available, this
can be achieved by conditionally mmitializing an extra reg-
ister to 1 and then using a normal adder to increment X by
one, where X denotes the bit- or one’s-complement of x.

Since x&[0,1], one can determine whether x<0.5 using
just one Tofloli gate (and 4 NOT gates). The result of this
comparison 1s stored in an ancilla qubit denoted by a.
7=(1-x)/2 can be computed using an adder (run 1n reverse)
acting on x shifted by one and a new register, after having
mitialized it to 0.5 using a NOT gate.

Then, conditioned on a (i.e., on a being 0), this result is
copied into the polynomial input register p,, and, condi-
tioned on a, X 1s squared into p,, . After having applied the
polynomial evaluation circuit shown 1n FIG. 1 (which un-
computes ntermediate results) to this input, p,, can be
uncomputed again, followed by computing the square root
of z.

Then, the result of the polynomial evaluation 1s multiplied
by either vz or x, which can be achieved using 2n controlled
swaps and one multiplier. The final transformation of the
result consists ol an mitialization to m/2 followed by a
subtraction, both conditioned on a, and a copy conditioned
on a. Finally, the mitial conditional inversion of x can be
undone after having (conditionally) mnverted the output.

Following this procedure, the Toflol1 count for this arcsine
implementation on n-bit numbers using m Newton iterations
for calculating Vz and a degree-d polynomial to approximate
arcsin (x) on [0,0.5] can be written as

Tarcsin = 3Ty + LT ooty — T fina)
+ 2T csquare + Tonut + Toadd
+ (2T vsgre + Do) + 302+ 2
+ a4
= 37 0dd + 2T poty + 3T
+ Toadd + 2T inysgre + 90 + 2

=d(3n* +n6p+ T - 6(p—)p=2)
+ mr(15n+30p +23)-30p(p—-1)—-4)

+9nr+1Dp+ gn(n+ 1)

+6n% +281—9p* +2

denotes the Tofloli count for computing the

of an n-bit number and

two’s-complement
L sqraretmnpy=. oo 13 the number of Toflol1 gates required to

perform a conditional squaring operation. Furthermore, 2n
Toflol1 gates are needed to achieve the conditional n-bit
swap operation (twice), and another 3n are used for (con-
ditional) copies.

All circuits were implemented at the gate level and tested
using a reversible simulator extension to LIQU1D.

where T.

irnv(rn)
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A summary of the required resource for implementing tan
h (x), exp (=x?), and sin (X) can be found in Tables 5-8. For
cach function, one set of parameters was implemented
reversibly at the level of Tollol gates 1n order to verily the
proposed circuits.

The convergence of the reversible fast inverse square root
implementation with the number of Newton iterations are
shown 1n FIG. 9, where the bit sizes and point positions have
been chosen such that the roundofl errors do not interfere
significantly with the convergence.

For all practical purposes, choosing between 3 and 3
Newton 1terations should be suflicient. The effect of tuning,

the constants 1n the mitial guess (see Eqn. 5) can be seen
when comparing FIG. 8 to FIG. 9: The imtial guess 1s
obtained from the location of the first non-zero 1n the
bit-representation of the mput, which results in large round-
ing-etlects for mputs close to an integer power of two.

Tuning the 1nitial guess results 1n almost uniform conver-
gence, which saves an entire Newton 1iteration for a given
.. -error.

The square root converges better than the imnverse square
root for small values, which can be expected, since

"y

has a regularizing effect for small x. The error after m
Newton iterations when using n bits for the fixed point
representation 1s depicted 1n FIG. 5. Additionally, the nitial
guess could be improved by tuning the constants 1n Eqn. 4
such that the error 1s minimal after multiplying

instead of just optimizing for the inverse square root 1tself.

The example implementation of Arcsine uses both the
polynomial evaluation and square root subroutines. The
oscillatory behavior which can be seen in FIG. 8 1s typical
for minimax approximations. For x>0.5, the resolution 1is
lower due to the wider range of

1

N

which was accounted for by calculating a shifted version of
the inverse square root. FIG. 12 shows absolute error on
[0,5] for N=2000 equidistant points of the example revers-
ible implementation of the square root for m&{2,3,4} New-
ton iterations and corresponding bit sizes n e {25,35,54}.
The fixed-point position 1s chosen to be p=5.

While this saves a few qubits (to the left of the binary
point), the reduced number of qubits to the right of the
binary point fail to resolve the numbers as well, which
manifests itself by bit-noise for x>0.5 1n FIG. 3. The degrees
of the mimmax approximation were chosen to be 7, 13, and
17 for m=3,4,3, respectively. Since arcsin (x) 1s an odd
function, this amounts to evaluating a degree 3, 6, and 8
polynomial in x°, followed by a multiplication by x.

In conclusion, the present disclosure relates to a proces-
sor-implemented method for performing an evaluation of a
polynomial corresponding to an mnput. The method may
include determining a polynomial interpolation for a set of
sub-intervals corresponding to the mput. The method may
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turther include constructing a quantum circuit for performs-
ing, 1n parallel, polynomial evaluation corresponding to each
of the set of sub-intervals.

The method may further comprise determining an overall
achievable precision for any input value that falls into any of
the set of intervals. The method may further comprise
partitioning the input into the set of sub-intervals by deter-
mining whether an input value falls 1into any of the set of
sub-intervals and labeling the mmput value using a label
indicative of one of the set of sub-intervals, where the
sub-intervals may be chosen by pre-processing the input.

The polynomial evaluation may be performed 1n a nested
fashion. The polynomial evaluation may be performed by
applying a gate to load a next set of coeflicients into a
quantum register, while multiplying a previous set of coel-
ficients by a vanable to produce an output, and then adding
the next set of coeflicients to the output.

In another example, the present disclosure relates to a
processor-implemented method for performing an evalua-
tion of a polynomial corresponding to an iput. The method
may include determining a polynomial interpolation of an
initial degree d for an 1nitial set of sub-intervals correspond-
ing to an input. The method may further include determining
whether a required target precision 1s achievable based on
the 1nitial degree d and the set of sub-intervals. The method
may further include 11 the target precision 1s achievable, then
constructing a quantum circuit for performing, in parallel,
polynomial evaluation corresponding to each of the set of
sub-intervals. The method may further include 1t the target
precision 1s not achievable, then either incrementing the
initial degree d or subdividing the initial set of subintervals
into additional 1ntervals until the target precision 1s achiev-
able and then constructing the quantum circuait.

The method may further include partitioning the input
into the initial set of sub-intervals by determining whether
an 1mput value falls into any of the 1nitial set of sub-intervals
and labeling the input value using a label indicative of one
of the 1mitial set of sub-intervals. The initial set of sub-
intervals may be chosen by pre-processing the iput.

The polynomial evaluation may be performed 1n a nested
fashion. The polynomial evaluation may be performed by
applying a gate to load a next set of coeilicients into a
quantum register, while multiplying a previous set of coet-
ficients by a vanable to produce an output, and then adding
the next set of coeflicients to the output.

The mput may be divided into the mitial set of sub-
intervals to reduce an approximation error associated with
the polynomial evaluation. At least a subset of the 1nitial set
of intervals may be fused together to reduce a quantum cost
associated with the polynomial evaluation.

In yet another example, the present disclosure relates to a
processor-implemented method for performing an evalua-
tion of a polynomial corresponding to an mput. The method
may 1include for each interval of a set of sub-intervals
corresponding to the input, determining whether to perform
the evaluation of the polynomaial 1n a first mode or a second
mode. The method may further include, in the first mode,
performing the evaluation of the polynomaial by: determining
a polynomial interpolation of at most degree d for a first
subset of the set of sub-intervals corresponding to the mput,
and constructing a quantum circuit for performing polyno-
mial evaluation corresponding to each of the first subset of
the set of sub-intervals. The method may further include, n
the second mode, performing the evaluation of the polyno-
mial using Newton’s method for a second subset of the set
of sub-intervals corresponding to the mnput, wherein the
second subset 1s different from the first subset.
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The method may further include determining an overall
achievable precision for any input value that falls mnto any of
the set of intervals. The method may further include parti-
tioming the mput into the set of sub-intervals by determining
whether an input value falls mto any of the set of sub-
intervals and labeling the mnput value using a label indicative
ol one of the set of sub-intervals.

The polynomial evaluation may be performed by applying,
a gate to load a next set of coeflicients into a quantum
register, while multiplying a previous set of coetlicients by
a variable to produce an output, and then adding the next set
of coetlicient with the output. The iterations corresponding
to the Newton’s method may be implemented using a result
of a pebbling strategy to meet a resource requirement
corresponding to the quantum circuit. The resource require-
ment may be a number of available qubits corresponding to
the quantum circuit. The resource requirement may be a
circuit depth corresponding to the quantum circuit.

It 1s to be understood that the methods, modules, and
components depicted herein are merely exemplary. Alterna-
tively, or 1n addition, the functionally described herein can
be performed, at least 1 part, by one or more hardware logic

components. For example, and without limitation, 1llustra-
tive types of hardware logic components that can be used
include Field-Programmable Gate Arrays (FPGAs), Appli-
cation-Specific Integrated Circuits (ASICs), Application-
Specific Standard Products (ASSPs), System-on-a-Chip sys-
tems (SOCs), Complex Programmable Logic Devices
(CPLDs), etc. In an abstract, but still definite sense, any
arrangement of components to achieve the same function-
ality 1s effectively “associated” such that the desired func-
tionality 1s achieved. Hence, any two components herein
combined to achieve a particular functionality can be seen as
“associated with” each other such that the desired function-
ality 1s achieved, 1irrespective of architectures or inter-medial
components. Likewise, any two components so associated
can also be viewed as being “operably connected,” or
“coupled,” to each other to achieve the desired functionality.

The 1functionality associated with some examples
described 1n this disclosure can also include instructions
stored 1n a non-transitory media. The term “non-transitory
media’ as used herein refers to any media storing data and/or
instructions that cause a machine to operate 1n a specific
manner. Exemplary non-transitory media include non-vola-
tile media and/or volatile media. Non-volatile media
include, for example, a hard disk, a solid-state drive, a

magnetic disk or tape, an optical disk or tape, a flash
memory, an EPROM, NVRAM, PRAM, or other such

media, or networked versions of such media. Volatile media
include, for example, dynamic memory, such as, DRAM,
SRAM, a cache, or other such media. Non-transitory media
1s distinct from, but can be used 1n conjunction with trans-
mission media. Transmission media 1s used for transierring,
data and/or mstruction to or from a machine. Exemplary
transmission media 1nclude coaxial cables, fiber-optic
cables, copper wires, and wireless media, such as radio
waves.

Furthermore, those skilled in the art will recognize that
boundaries between the functionality of the above described
operations are merely illustrative. The functionality of mul-
tiple operations may be combined into a single operation,
and/or the functionality of a single operation may be dis-
tributed 1n additional operations. Moreover, alternative
embodiments may include multiple instances of a particular
operation, and the order of operations may be altered 1n
various other embodiments.
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Although the disclosure provides specific examples, vari-
ous modifications and changes can be made without depart-
ing from the scope of the disclosure as set forth 1n the claims
below. Accordingly, the specification and figures are to be
regarded in an 1llustrative rather than a restrictive sense, and
all such modifications are intended to be included within the
scope of the present disclosure. Any benefits, advantages, or
solutions to problems that are described herein with regard
to a specific example are not intended to be construed as a
critical, required, or essential feature or element of any or all
the claims.

Furthermore, the terms “a” or “an,” as used herein, are
defined as one or more than one. Also, the use of introduc-
tory phrases such as “at least one” and “one or more” in the
claims should not be construed to imply that the introduction
ol another claim element by the indefinite articles “a” or
“an” limits any particular claim containing such introduced
claim element to inventions containing only one such ele-
ment, even when the same claim 1ncludes the introductory
phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an.” The same holds true for the use
of defimite articles.

Unless stated otherwise, terms such as “first” and “sec-
ond” are used to arbitrarily distinguish between the elements
such terms describe. Thus, these terms are not necessarily
intended to indicate temporal or other prioritization of such

elements.

What 1s claimed:
1. A processor-implemented method for compiling a
quantum circuit for performing an evaluation of a polyno-
mial, the method comprising:
recerving an mput comprising a polynomaial function and
a set of sub-intervals;

partitioning the polynomial function into the set of sub-
intervals by determiming whether an 1input value of the
polynomial function falls into any of the set of sub-
intervals:

computing a label register having at least one label

indicative of at least one of the set of sub-intervals;
determiming a polynomial interpolation for the set of
sub-intervals corresponding to the mput; and
using the processor generating an output including the
quantum circuit to a quantum processor for execution,

wherein the quantum circuit comprises a label gate for
mitializing the label register and quantum gates for
performing, 1n parallel, polynomial evaluation corre-
sponding to each of the set of sub-intervals.

2. The processor-implemented method of claim 1 further
comprising determining an overall achievable precision for
any input value that falls into any of the set of intervals.

3. The processor-implemented method of claim 1,
wherein the set of sub-intervals 1s chosen by pre-processing
the 1input.

4. The processor-implemented method of claam 1,
wherein the polynomial evaluation 1s performed 1n a nested
fashion.

5. The processor-implemented method of claim 1,
wherein the polynomial evaluation 1s performed by applying
a gate to load a next set of coeflicients into a quantum
register, while multiplying a previous set of coetlicients by
a variable to produce an output, and then adding the next set
of coelflicients to the output.

6. The processor-implemented method of claim 1,
wherein the mput 1s divided into the set of sub-intervals to
reduce an approximation error associated with the polyno-
mial evaluation.
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7. The processor-implemented method of claim 6,
wherein at least a subset of the set of intervals 1s fused
together to reduce a quantum cost associated with the
polynomial evaluation.
8. A processor-implemented method for compiling a
quantum circuit for performing an evaluation of a polyno-
mial corresponding to an input, the method comprising:
receiving by the processor an mput comprising a poly-
nomial function and an initial set of sub-intervals;

partitioning the polynomial function into the initial set of
sub-intervals by determining whether an input value of
the polynomial function falls 1nto any of the imitial set
of sub-intervals;

computing a label register having at least one label

indicative of at least one of the initial set of sub-
intervals:

determining a polynomial interpolation of an 1nitial

degree d for the initial set of sub-intervals correspond-
ing to the mput;

determining whether a required target precision 1s achiev-

able based on the mitial degree d and the mitial set of
sub-intervals;

if the target precision 1s achievable, then generating an

output including a quantum circuit to a quantum pro-
cessor for execution; and

if the target precision 1s not achievable, then either

incrementing the initial degree d or subdividing the
initial set of subintervals into additional intervals until
the target precision 1s achievable and then generating
the output including the quantum circuit to the quantum
processor for execution,

wherein the quantum circuit comprises a label gate for

initializing the label register and quantum gates for
performing, 1n parallel, polynomial evaluation corre-
sponding to each of the set of sub-intervals.

9. The processor-implemented method of claim 8,
wherein the i1mitial set of sub-intervals 1s chosen by pre-
processing the mput.

10. The processor-implemented method of claim 8,
wherein the polynomial evaluation 1s performed 1n a nested
fashion.

11. The processor-implemented method of claim 8,
wherein the polynomaial evaluation 1s performed by applying
a gate to load a next set of coeflicients into a quantum
register, while multiplying a previous set of coetlicients by
a variable to produce an output, and then adding the next set
of coetlicients to the output.

12. The processor-implemented method of claim 8,
wherein the input 1s divided into the initial set of sub-
intervals to reduce an approximation error associated with
the polynomial evaluation.
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13. The processor-implemented method of claim 8,
wherein at least a subset of the 1nitial set of intervals 1s fused

together to reduce a quantum cost associated with the
polynomial evaluation.

14. A processor-implemented method for performing an
evaluation of a polynomial, the method comprising:

recerving an mput comprising a polynomial function and
a set of sub-intervals;

partitioning the polynomial function into the set of sub-
intervals by determiming whether an 1input value of the
polynomial function falls into any of the set of sub-
intervals:

determining a polynomial interpolation for the set of
sub-intervals corresponding to the mput; and

using the processor generating an output including a
quantum circuit for performing, in parallel, polynomial
evaluation corresponding to each of the set of sub-
intervals, wherein the polynomial evaluation 1s per-
formed by applying a gate to load a next set of
coellicients 1nto a quantum register, while multiplying,
a previous set of coellicients by a varniable to produce
an output, and then adding the next set of coeflicients
to the output.

15. The processor-implemented method of claim 14,
further comprising determining an overall achievable pre-
cision for any mput value that falls into any of the set of
intervals.

16. The processor-implemented method of claim 14,
wherein the set of sub-intervals 1s chosen by pre-processing
the 1nput.

17. The processor-implemented method of claim 14,
wherein the polynomial evaluation 1s performed 1n a nested

fashion.

18. The processor-implemented method of claim 14,
further comprising labeling the mmput value using a label
indicative of one of the set of sub-intervals.

19. The processor-implemented method of claim 14,
wherein the previous set of coellicients are multiplied by a
variable mto a new register and the previous set of coelli-
cients are stored as intermediate results.

20. The processor-implemented method of claim 14,
wherein the mput 1s divided into the set of sub-intervals to

reduce an approximation error associated with the polyno-
mial evaluation, and wherein at least a subset of the set of

intervals 1s Tused together to reduce a quantum cost associ-
ated with the polynomial evaluation.
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