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GENERATING SYNDROMES FROM AT LEAST ONE QUANTUM
REGISTER INCLUDING /LOGICAL QUBITS, WHERE /1S A POSITIVE
INTEGER

2205

2210

ROUTING THE GENERATED SYNDROMES TO A SET OF d
DECODER BLOCKS COUPLED TO THE AT LEAST ONE QUANTUM
REGISTER, WHERE d < 2%/

- n—
R S A

' AT A DEPTH-FIRST SEARCH (DFS) ENGINE, ACCESSING VIAONE |
OF A FIRST SET OF MULTIPLEXERS, SPANNING TREE MEMORY |
DATA GENERATED BY TWO OR MORE GRAPH GENERATOR |

|

F"“

MODULES
mmmmmmmmmmmmmmmmmmmmmmmmmm w’
'l 2220
S S P
| GENERATING EDGE STACKS BASED ON THE STM DATA |
M e e — — — ooy — d— — o— — — —— — - — e — ey e e e — — — —

1 2228

(AT A CORRECTION (CORR) ENGINE, ACCESSING, VIA ONE OF A |
| SECOND SET OF MULTIPLEXERS, EDGE STACKS GENERATED BY |
| TWO OR MORE DES ENGINES |
Yl: [2230
mmmmmmmmmmm e[ __
' GENERATING MEMORY REQUESTS BASED ON THE ACCESSED |
EDGE STACKS |
"""""""""""" "I_ [2235
ROUTING MEMORY REQUESTS GENERATED BY EACH CORR |

{
| ENGINE TO MEMORY LOCATIONS VIA ONE OR MORE |
'\ DEMULTIPLEXERS |

[ ROUTING RETURN SIGNALS THROUGH EACH MULTIPLEXER OF |
|  THE FIRST AND SECOND SETS OF MULTIPLEXERS BASED ON |
| ROUND-ROBIN ARBITRATION |



US 11,755,941 B2

Sheet 23 of 31

Sep. 12, 2023

U.S. Patent

9Ll

ANOHANAS
dd4SSdddINOD

AN
dO1VddNdO

SOILSILVLS

eC Dl

90€C
ANHLIHdOD 1V

NOISSJddINOD

c0CC

v0ec JONVLSIA
13d0O 3SION 3009

4204
d0SSdddINOD

0lSC 80

clLec
JINOHANAS

NOILO NI dO1VddNdD
d0ddd J0IL1V1

8LEC
d44d004d

»/oomm



4ONVLSIAd 4d00
LC ol Ll Gl el L1

US 11,755,941 B2

Sheet 24 of 31

Sep. 12, 2023

U.S. Patent

v¢ Ol

.0l

Sd1Vd d0ddd INJdd34410
d04 OlLVd NOISS3ddINOO NVIIA



U.S. Patent Sep. 12, 2023 Sheet 25 of 31 US 11,755,941 B2

-
ap
L)
N
O L
N O
Z
<
|_
2
-
LL]
-
W O
0O
-
~
L)
-
-
L)
N
L) - L) - L) - L) O
O O ) o) 00 O N N
N N <~ <~ <~ ~ ~ -

d41dAVIA d41LSN 1O

FIG. 25



U.S. Patent Sep. 12, 2023 Sheet 26 of 31 US 11,755,941 B2

= O o 29 [N
\ \ -~ 9 3
| ‘ g | :
= O =z Lo
. ‘l“ \
\- ‘ O
= d? S
\ \
' \
Q =

Ly
O

CODE DISTANCE

\ \
\
Q -
.\. ':.““" \\
= Q o
\ \\
e -
\ \\\
Q ©
\ \

10’

=)
-
—

10"
107
107
10
10

S119N0 TVII9D0TN HO4 (S9N NI)
AYSOWIN F3HL ONINNVYCS 40 3ZIS

2600\
FIG. 26



U.S. Patent Sep. 12, 2023 Sheet 27 of 31 US 11,755,941 B2

-
O
e
-
<
C} b
-
.l
N
\’ —t
-
O\
A
|
.
e T -
-
-

80
EDGES PER CLUSTER

O

O

-

s

_____________________________________________________________________________ - - e

——— (N

.
- Y oy 2 ) by © ™

O O O O - - O O
A e . s < e e T

ALavaodd




U.S. Patent Sep. 12, 2023 Sheet 28 of 31 US 11,755,941 B2

O
/ \ ™
' \
- \
s \
\
/ \
Y \ O
[ \ N
\
[ \
\
| ‘I \
2% C‘)
| o L
. ., \ N O
| Y \ E
| | —
| ‘\ =
| \ A
| \ L O
\ O
| \
| \
l““ \
C
~ -
' , ©
‘N |
Ly < p ~ | |
o © © RN |
| | | N o
2 o = | Do
-
O
ve,
N
& & 2 2 e o

d41dAVIA d41LSN 1O

FIG. 28



US 11,755,941 B2

Sheet 29 of 31

Sep. 12, 2023

U.S. Patent

-
O

©

0L

09

1S00 NOILNODAXd I T1NAOIN NdD-dO
0S Ov 0¢

e © gy o0 °
o ©, 0 ©

® %@@ g® ©°

e 9 o©

©

0¢

Ol 0

»/oomm

Ol

0c¢

0¢

Ov

05

09

1S00 NOILNOIXd ANIDONI S4d



U.S. Patent Sep. 12, 2023 Sheet 30 of 31 US 11,755,941 B2

hbkfanbSfahbfahbfahbfahbfahbfahbifahbi ot ot ot fanbfanbfanifanifanifanbfanbfaghbfahbfahbfaubfaubfahbfanbfahifanbfanbfanbfanbfanbfahifahifahbfaghbfahbfghbfahbfahbfahbfahubfanbfanbfahbslfanl
I F IR R TR B FIR R NI R NI FYE R FFP R NN FY RN YRR NI NN NN NI NIRRT N FTR Y FERE R FPR N FIR N F RN FFR N PR N NN RN TR TR NI FYE R NIRRT NIRRT R FTR R NI R FER RPN RN PR RPN NN RN PR T

400

EfggEfgREFgr=" "R - EI-= By A g R E g RN g I g I g g RN g g 0 g 0 g I g g R Ay A g g 0 g g ROy R E Ay R E g B g R E g I g g Ay I g NI g RN g R g S g Ay RISy RO g R E g R g g g R g Ay
rh Bdp g RdAp § P Bl g B g BAp g Nl g Edp § R g Bdp § B g NS g N g Edp g Rdp § Bdp g B § NS g N N Rdp j Bdp § Bdp § RS g NAp g Nl § ERdp g Ry g By g NS g EAp g Bl g EAp g Edp j Bdp A g NS g N g EAp gy ERAp g EAp g EAp N
LILE N LT I AR FRE AN RENRE R FNE R NE LN R YRR LR R RN FE R FRRFFE LT NE R R L NE TR R YRR RN R LR NE R TR LR R R TR R
FrFimFFLmEr, | FFR N FEFR N FFR N FErR N N FEFR S PR NN PR FPRE PR NP PR NP N PR NP NP FEE R FFRN N NP PR RN FEE R FER Y FERY NN PR RN FEE N FERN RN NN RN PR R RN R
Efg AN g Ay E g A g R g N g B Ay I g g N Ay R E g 0 g B g BNy R E g N Ay I Ay g g I Ay RNy R E Ay R E Ay B Ay g I g g R Ay RISy I g g Ay O g R E Sy RS g I g N g g g R E Sy R A g BNy
rh Bdp § Bdgy r Bl p g B g NS g N g Edp Ry § Bdp § N NS g N g Edp A Bdp § N § NS g N g N § RAp § Ndp g B § NS g NS g Nl § Edp Ry § Ry § NS g NS g B § Edp g A Bdp NS g NS g A g EAp g RAp y EAp g EAp R
LILE N L TN aabk g g b fg b f gk g gty gty fagh b f gt fgh gyt faghb St g gt g f g fghbfahibfghbifghbif gt g fghb gt fghibfghbifghb g fgub gt g gt gy gt
FFamEFFLw™Er, e E N AN s RN FA RN FA AN P AN e AN A AN P e RN F e AN P RN P RN e AN P AN N RN F e AN A RN P RN e AN P AN s AN P RN P RN P RN e AN P AN P AN F s AN P AN P RN P AN P AN FA RN FA AN FA AN P AN Fa AN Fa RN Fa N F.
BNy AN SRy g NSy g N g gy g NSy NSy NSy N g g NSy NSy RNy NSy N g g g NSy N Ay NSNSy gy gy Sy NSy Ay NSy g g S g NSy NSy g gy RSy SISy NSy N gy
PR ENAp gy ERAp N P Ny Edp g NSy Ndp gy Ndp § RSy Ny § NS g NSy EAp gy EAp g RS NAp § NSy NSy Ny N NS NAp § N § NSy NSy Ny Edp RSy NSy § NSy NSy Ny A RS Ndp § NS g NS NAp §y EAp g RSy EAp g EAp W
LILE N L TN aabk g g b fg b f gk g gty gty fagh b f gt fgh gyt faghb St g gt g f g fghbfahibfghbifghbif gt g fghb gt fghibfghbifghb g fgub gt g gt gy gt

[ RN PN L RN R e R N P N N L R R N L R R R e R R T R R T R R R R T T T R T R T T R T O T
E g A g g E g I g 0 g R E g R E g R E Sy g E g R E g g R E g R E g Ay g E g I g 0 g R E g R E g R E Ay R E g Iy B g A E g R E g A E g I g I g B g R E Sy R E g RS g R E g R Iy g O g R E g RS g g E g By
r R Edp g Bdp PR Bl g Bdp §f BAp g Bl g A g EAp § NSy g B g EAp g EAp g Ndp § A § NS g NAp § RS g Ny g A § A § B g EAp § RS g B Ndp § EAp § B g A § RS g B g Rdp § EAp § B § A § ESp g N Edp j EAp § EdAp g ERAp g EAp

FFs%SFFhd%FFr,: FFaSFFd S FFd RS FFdRFrFd S FrFfadSFFfFd S FrFs S FFa S FFa S FFdSFrFd S FFd S FFL S FFd S FFa S FFd S FFfFdSFFsa S FFa S FFa S FrFa S FFda S FFfFdSFFda s FrFdaFrFfa i FrfFa s FFfa s FrfFa s FrFa e FrFa e FrFaaFrrFasrFa s rFrFasrryasrrasmrse LN ]
A AL R LA "
rp A A p g Edp g Edp g Ndp g Edp j Edp g RAp g Edp g EAp g NAp g EAp § Edp g RAp §j RdAp g EAp g Ndp g Edp §g RAp g RAp § Edp g NAp g RS §EAp g NAp g Edp g RAp § NAp g ESp g Edp § R Ap §j EdAp g NAp g NAp g EAp g NdAp g RAp g EdAp g RAp R ap .I

L B R ] [ AL FARFFLRFFRREFNEREYNE R FNERTFFENFFERFFELEFFRLRFFEL LR R RN RN RPN NN FL R NRE R NE R NR TR TR NN R R NN N R R PR R R
L R L R L R L R L A R L R L R L I R L R L R L R LI R L R L R L I R L R L R L A R L R L R L R L A R LA R L R L R LI R L R L R L R LI R L R L R L I R LI R L R L A R LI R LT R L

P Ndp g RAp N

LY N RN AT F AR FE R FEARFFR RN R FRA R NE LT FE YRR FREF LR N R LR N R FRE RPN RN LR RN R N LT NN RPN NE RN RN NP RN R R

FrFsd " FFd W rr, m FFsd B FFsa " FFs e FrFa e N rFa e N Fda e N Fs e N Fa e N Fa N Fa RN Fa R N Fa e N Fs SN Fs s N s N Fa e N Fa e N Fa e N Fsa RN Fa N Fda RN Fa RN Fa RN Fa R N Fa e N Fs N AN Fa e Fa e FFa e N Fa AN Fa N Fa RN Fa SN Fa s ra s A B FFadawrr ml.‘.

Efg RSy g g E g Iy g g I g g R g R E g R g R g R I g R I g R g R g R Ay g g Ay g R E g g A R g R g R g R g R I g R I g R g R I Ay Ay R E g I I Iy g

rhEdp g Rap gy FREdp g Bdp g Bdp g Bdp g Bdp j B dp j Bdp g B dp gy B iy gy R dp g Bdp j Bdp j Sdp j Edp j Sdp g Sdp j Sdp j Bdp j Bdp j Bdp j Bdp j Bdp g Bdp §j B dp j Bdp j B dp j Sdp g Bdp j Sdp j Bdp j Bdp j Bdp j Edp g Edp g Edp | RS LI LI L )
LI BT R IR Y F R Y FRL L PR PR R FRE LI FL LR LR NN NN FE LRI R LR LR PR PR R FR RN RN R IR RF AR RFS R
FFAmTFLWEr, I FIR R FIR R SRR FTR R FIR R YRR N NN FYE N YN FYE RN RN R NI NIRRT R NI R NN FFE N FER N FPR RPN PR N N RPN PR NP RN PR FPER FER R NN TR R TR R !""l.lhi.lli
Efg ANy RE Sy Efg S g g E g g Iy B g B A R E g R g R I g R I g R By R E g g Iy R F g Iy Iy g Ay N g g g R g R E g R E A g R I g A Ay A Ay A O g A O Ay g g O L= wmrEpw . L
rhEdp g Bdp § rh Bdp g Bdp jh Bdp h Bdp jh Bdp jh S dp jh S dp jh B dp g Sy g Sdp g Bdyp g Sdp g Sdp jy Sdyp jy Sy g Slp g Slp jh Sdp jh Bdp jh Bdp h Bdp g Blp jh Blpg jh B dp g 8 dp g S fp jh Ofp gy Sdph Sdp j Sdp g Bdp g Bdp jy Edy g Edp§
LT BT R IR FRL Y FRL AR R R RS FRLFR LR RPN RPN RN RN RN NP NN RPN LR RN R NN RN RPN RPN RPN LYY LN e [ L
[ F IR R FIR R SRR NP R PR PR NP NP F PN FY RN NP N R N R NS NP NP NP FFR N FPE N F PR F RN F PR NP NP NP NP PR NP NP FEE D FER R FERE FYRE NP R NP E NP RN NN -

PN N N Ny Ay g Ny § Ay NSy NS g Ny A NS Ny Ny N g A g WA g NS g NS g A § Ny Ndp Ny Ny Ay § Ndp § Ny N § N g A NSy Ed g g N g EAp g NAp g A g EAp g ERAp g R A g EA N |||--||l- »

LT R N N N N N N Y T N N e N I F N N N Ty S Fr RS F N IS TR RN N T N T R R ) LT ‘:ilIlilIlilIlilIlilIlilIl
FrFa R FFs AN Fa AN FAa AN Fa A N Fa R N Fa AN FAa AN FL RN FA RN FA RN N AN L AN L RN Fa RN FAa RN FA AN Fa AN FA AN FA AN FA AN FA RN FA RN FA RN FLA RN FLA AN L AN FA BN FA RN FA AN FA AN FAa RN FA RN FAa RN FA RN FA RN FA RN Fa S Fh
BRI g A I A A g A g A g A A g AN A g A A g R A g A I A A I F g A I A g A g AN g I g A A g A N A A g A Ay A I g A I F g A I g A I g g R A g A A g A A g A Ay A I A g A A g A I A g A I F g A A g R A g A S g R Ay AN g Rl whdanadanbedanadanhsdgnhsdant
PN N A N Ny Ay Ay A A g N § N NAg g N Ny NAp § A g Ay A g NS g NAp g NS § Nd g NAp § NAp y Ndp § Ay § NAp § N N § N A g A N Nd g NAp § NAp NS g A g RAp g NAp A HA llllllllllllllllllllllllll
R N I i e o e e e A A I I o e N e e A e A e e A I N I N I e A e A N Y R NN T F TN I TN TN TN Yy AFF raan
FrFsSFFd B FFdaRFFaRFrFdSFrfd S FrFs S F s SN Fs SN Fa RN Fd SN rFa S FFsd S N Fa SN Fa RN Fa SN Fd S FFe SN Fad SN Fd SN Fs RN rFa N Fa NS s s N rFa s Fa e FrrFa s rFa s FrFa s FrrFa e rFrrFa s FrrFa s rrFasrrFasrrasrsy -rsr - - e e m Em Em Em Em E E E Em E Em o e e e Em
B AN A A g AN g AN g A Ay RN g A Ay RS Ay A I g I A g AN A g A g AN g g A A g N g Ay A A I g A F g A F g A g A g R A g A g A A g R Ay A I A S Ay AN g I F g RO F g RO g RO Iy O
PN N A N EAp Ay WAy Ay NS N § N § NAp g Ny Ny NAp § Ndp § Ay NS g NS NS N § Ny Ndp § Ny Edp § WAy NAp § NAp § N § N g EAp g NSy EAp § NAp §y NAp y NAp AN PLERR]

bk fahbfahb et fanb gt et e fahb ettt et et fah St et e Sfahbi Sttt anb et ahb eSS bbb b R R
[ PR FTRE ¥R FEE N NP NP N FNER N FEE N N RN FFR N FPE R NP PR RN ¥R NP FPE N PR R NN FPE N R PR FEPE Y NP NER N NN RN NN NP FER N NER N NP SRR NI FFE NIl oo sresassrscssrsonsrsn ErEmsrsaErsns

At fgh bt fgh b f gt gt gt ot fgh bt gt f gt f gt f gt f gt f ot ot oot fanbfaghifghifoghif o faghb gt g fghbfghbifghbfghbfghbfghbfoghb gt slfanbslfahn
[ F RN FERE N FPR R FIR R FERE NP R FFRE NI RE NP FPRR RN NP FIRE FEE N PR FPL R YR N NI E FYR N FIR N NI FPE R PR NN FEPR R FERY NN FPR R FYRE RN FEE N FYR N F RN N Arsbhbirsbhbirsbhdirsbdirsbirsbhdirsbdirsbbirsbfirshs
BN AR g A g I Ny R A g AR g I g R I N g A g A g I A g A g AR g R g R A F g R A N g I g I Ay A A g AN g AN g I A g R A g R g I A g R A S g R g A g I S g R A N g AR A g RISy A S g A A g AN [ FFELFFERFFFLFFEL N FEEFFFRFFRL N FEL YL FFEE N
PR Edp g Bl BAp g Bdp §j Bdp § Ndp § Bl g RAp § B A N g N § EAp § NS g RAp NSy  EAp g Ndp § NS § NS g NAp § RS N g Ndp § A § R g ERdp § EAp g N g Edp § A § R g R RSy g EAp ELBdg R Rdg A Rdg L Rdg A Rig A B dg LR Bdpg R pdg R Rdg L B dy

350

LR L L L L L L L L L L L L L L L L L L L L L L L L L L L L T I L] T v v u arn u Ay u A n a A n R A u A a A Ay A Fn’
FrFa B FFsa AN Fa e N Fa e N Fa e N Fa e N Fa N Fa AN Fa AN Fa RN Fa RN N AN s N s N Fa N Fa N Fa N Fa e N Fa AN Fa AN Fa AN Fa N Fa N Fa e Fr s s rFr s r s FrrFeaarFrrFa s FrrFa s rrFa s rrFanm L W

AL R L A L R L R L R L R L R L R L R R L R L R L R L R L R L R L R L R L R L R L R L R L R L R L R L R LT R L T R L T R L TR YT R L L = feni Fanadanadanbhdantdanadanadanadandanhadanudant,
PN NAp N NAp g N g NAp g WA g NAp N Ny A g NAp g Ny NAp g NAp g NAp y NAp g N Ay g A g WAy NAp N Ny NAp g NAp N NN NAp g NAp g NAp g NAp A g NAp y RAp g NAp § EAy [T s dna nd R AR A R AR A B L AL AR L B Ap R B A R B AR AL B AN

LI F A AT F AR FE R FR LT NN NE R NN N NR RPN N VAT R N R FR NN NE RN N R FR LN R RN NN FRE PN TR R e IR RF AR AN AR AFARBRF AR AFIRAFARAFAREFARAFAREBFARALNF IR AN
[ F YR FTRE N FFPR R FIR Y IR NP RN NI NP F YR IR NP FFR N NI PN NP NI N NI R RN IR PR PR NN FEE R FYR N FERE PR PR RN FEE R RN - Bl - frsbhdrsbhdirsbhivsbirsbbiwsbhirsbdirsbhdirsbdirsbdirsbbrnind
g I g I g I g g0 g g E g R g R E g R E g R E g g0 g R E g R E g ROy RN g I g g0 g g E g g g g g N g g Ny RNy N g N g g B E g T T I g I T
PR Edp g Bl RSy g Edp g B § EAp § Bl g Rdp h BAp g Edp g N § A § N § Rdp g Ay  EEp g NS § RAp § N g Ndp §h RS y Edp g N § A § R §j Rdp jy RAp g A g N § EAp § ERAp r LB dg A Bdg L Rdg A Bdg A gl BHdg L B dg i Bkdgl R dg LA b dg L Bk dg L Rk dg L B iy
ko b f g b o b g b g byl o bbb g fgabf gttt gyl fghbf ol gubfghb g o fghb bl ghbf gt g Ffgnh i I '
FrFs B FFsd "N Fa "N Fa RN Fed S N Fd e N Fa e N Fa e N Fsa AN FAa RN Fa RN Fs aS N Fs N s e N Fa e N Fa e N Fa e N Fe e N Fa RN Fa AN Fa AR N Fa N Fa N Fa e FFsa s FrFa s rFsa e rrFeaarrFa s rrFasrranmrry rebhrebdw
Iy AN Sy RSy A g R g g Sy A Sy AN g R g I F g RIS g R g I g I S g A S g AN A g A g g Ay I Ay A g AN g I g I F g A g AN A g I g R g RIS g A F g I A gy lFl :E!J;lilili#
PN N N N g Ny NAp R NS N Ny NS NEp Ny Ndp NS NS Ny N NSy NAp NSy EAp § NAp § NSy N Ny Edp § Ny B g Ay NAp g A EAp
L o e e N T T TN M & s raufraaiore !

Fr NP N F N s AN P AN P N P AN P AN L AN A AN FA RN P RN P AN P AN P AN N AN FA AN P RN s AN P AN P AN P AN FA RN FA RN P AN FA AN FA AN F s AN FA RN FaR S
IFIIIFI1lllllFlIlFlllllllllilllilllilllllFlIlFlIlFlIlFlilFlIlFlllllllFlllFlIlFlilFlilFlIlFlllllllllilllilllilllllllllllllll !!iﬁiliﬂiliﬂil
dghSdpg L Bdg L B4

FFaSFFd B FFda"FFea B FrFdSfrfd S FFfFs S FFfs SN rFa S FFaaFFd S FrFfd S FFd S FFa s FFa B FFea S FrFd S FFfd S FFa s FrFa e FFaaFrFa s FrFa s rFrFa s FrFa e FrrFaarrFaarrFasrrysasmrsr
AL I R L R LA R L A L A R L R L A L R L I R L R L A L A L R L R L R L A A L R L R L R L R L I R L R L A L L A L R L R L R L R L
PN N NAp g WA g N g WAy NAp g NAp g N WA Ny WA g NS g WAy WAy WA g N g Ay WA g EAp Ay g WA g NAp N NAp g Ny g WAy NAp g EAp g NAp gAY
AL L L L L L R L L L L L L L L L L L L T L L L L L L L L T L r L

AL R L N L R L L R L R L R L R L R L R L R L A L R L O L R L R L R L R L L R L R L R L R L R R L R L R LR LR L
PN N WA g WA g Ny NAp Ny NAp § NAp g NSy MM NAp WAy g WA g WAy WA g Ny g A g NAp § WAy NAp § NAp g NAp y NAp Ny g NSy NAp g RAp g NAp g EAp Y
D e e A o e I A e R e e A o I e R A I T e I T A g A T T A TR T T e I e u :E-
Fra N Fa s N Fa N Fa AN Fa A N Fea AN Fa AN Fa AN Fs BN Fa BN Fa BN e RN e RN e SN Fea AN Fa AN Fa AN Fea AN Fa AN Fa AN Fa AN Fa BN Fa RN Fa RN Fa N Fa s FrrFaarras

rh Bdp g Bdp jh Bdp jh Bdpg jh B dp §h B dp jh 8 dp j B dp j Sdp g Sdp g Sdp j Sdp j Sdp j Ol g Sl g Sdp g B dp h Bdp h B dp h Bdp h Bdp g B dp g Bdph Sdp g Sdpg g Bdp g EdpgH
hbkfahbfahbfah bbb fahb o ool ot gt ottt oo ool S bbbt fanb g
I F IR R FIR R FPRR NP NP NP FFE N PR RN NN FPE Y FER N NER N NN NP NP NP NP NP FIRN PR NP R FPRR N NN NN TN ¥y

LR R L R L R L R L R L R L R L R L I R L R L R L R L R L R L R L R L R L R L R L R L R L R L R L T R L T R LN R LR R Tt e e mbd sk sk s m b s mbmd sk s e mbd s m
r Bl p g BEp g NS g Bl § A g Ry § Bdp § N NS g N g N RS Rdp § N g RS g NAp g B f RAp f RAp § Edp § RS g EAp A g EAp g RAp j EAg Ll "= L Rdg L&
bk fah b fgh g gk gyt f g bbb g gyt f g fghbif gl gt gyt gt fghbifghbf gt gt fgabi ot BN RN FY RN NSRS

[ FFR N FERE N FFR N FER N NP NP FERE NP PR F RN FER N RN FERN NN N NN NP RN RN RN NN RN NN RN R RN Y li-lli-lli-lli-lli-lli-lli-lli-lli-lli-lli-lhi-lli-lli-lli-lli-lli-lhi-lli
By RSy g g 0 g 0 g g E g RO g R E Ay g 0 Fg 0 g g I g g O g g 0 g 0 g g E g g B g g I g g 0 g ROy B gy m R EE E:l-lil-li!.FJ!.#JI.#Jlilil-li!.li!.Fiiiﬂlliﬂilili!-li!-liiiliiiﬂlliﬂililiii
r A B g B § B Ay Bl § B § NAp § N g Bdp § RS § Bdp g N § EAp § A § A NSy y EEp g N § EAp § N § BAp § RSy y Edp R § RAp § RN

IR N RN RN NN PP NN LN FR AR RN FR A NN RPN RF LR NN NN RN E Iy, R R e R e e R e R A N A N A N A R R A e R A R A R A R A A A A A W W’
L NN N N R R I T R R T R T I T I L T T R R I T wshhwsbhbrsbfbiwshdrwsbdirsbtivsbbwcsbhdirsbdrsbhdirsbhdrsbtirsbbwsbhidirnbdirsbhdirsbhdronbdirnbbionbhd
LR R L R L R L R L R L L L R L R L R L R L R L R L R L R L R L R L L R L R L R L R L T R R L fgnbadanbdanbadanbadanadanbdanbadgnbadanadanadanbadpnhdansdanbdanbadynhdanadanhdanhdant,

r N dp g BAp g NS g Edp § Edp § Ay § Ay § Ay § NS g NS § NS § NS § NS Edp g A g EdAp g Sy § Ry § Ry § B § ESp A g A EA§ ES RRdg A Bpdg L BFdg Ll B dgh R dg i R dg L Fdg L B gL B dg Ll B ig L Fdgh Fdglh R dg L B dgl B dg i R dgh R dg L R dgh kdg L i
At Ffgh b f gt gt gt gt gt g b gt gt f g f g f gt f gt gt oot fanbt ot gt gt gt f g fgyhyf

FFhd NP AN F N s AN P AN P AN P AN P AN F A AN N AN FA RN FA AN P AN FA AN Fa R NN AN Fa R Fanr s rraarranrrsnrranrran Qe AR R R RIR SR IR R IR RRIRRRIERR TR RRIRRR IR RRIRRRIRERIERR TR RERIRSR TR RN RIRRR AR TN INE]

LA R LIS RARNS AR ERLRS LSS RELESIRENIRENIRENSRENSRENSRLNS LN ELNI RSN RN RN SRR I RENNERERNNERELESERELEYRLENR] I danadanadanbadanadanadanhdanhdanhadanadanadanadanedanhdanedanh o anedanhdanudanth,

r N dp g B Ap g NS g Edp § Ay § Ay § Ry § Ry § NS g NS § A § NS § NS g Edp g A g A g Sy § Ry Ry By f ESp gy NS g EAp RS Bidg L Bdg L BFiglh BFdg Ll B dgh Fdg i Fdg L B dg L gL B dpg Ll B ig L Fdglh R idgh Fdg L B dgl R dg A R dgh B dg L R dg L kdg L i
hlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlflhlf IFA R LFARRFARRBFARRBFARBFARBFARAEFARAEFIRAFIRAFIRALFIRALFARRBFARNEFORAENFERAENFSRALFSRRLFSRLFSRREFY R
— -

156 %%%%‘%%%%%%% "*?:

300

250

150 200
ESTIMATED EXECUTION TIME [ns]

100

50

3000

N ap ~r LD

1 1 1 1

O O O O
Al - .

o ) —

1 1 -

O O o
\_?r

A P g LD

- “ ©
O O OO O O O
NN T T T T T

107"

10-11

ALITIavVE0dd

FI1G. 30



US 11,755,941 B2

Sheet 31 of 31

Sep. 12, 2023

U.S. Patent

NJLSASANS NOILVIINNININOD

NJLSASENS LNdNI

NJLSASHNS AV 1dSIA

AHONIN 1LV 10N

d055d400dd 01901

NJLSAS ONILNdINOD




US 11,755,941 B2

1

GEOMETRY-BASED COMPRESSION FOR
QUANTUM COMPUTING DEVICES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/687,517 filed Nov. 18, 2019, which claims

priority to U.S. Provisional Patent Application Ser. No.
62/883,514, filed Aug. 6, 2019, the entirety of each of which

1s hereby incorporated herein by reference for all purposes.

BACKGROUND

(Qubits are prone to high error rates and thus benefit from
active error correction. Quantum error correction codes may
be used to encode logical qubaits 1nto collections of physical
qubits. Measurements may then be used to detect and correct
errors using an error decoder. Qubits typically operate at
very low temperatures, and data 1s transported to the error
decoder at a higher operating temperature.

SUMMARY

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limat
the scope of the claimed subject matter. Furthermore, the
claimed subject matter 1s not limited to implementations that
solve any or all disadvantages noted in any part of this
disclosure.

A quantum computing device comprises a surface code
lattice that includes/logical qubits, where/is a positive inte-
ger. The surface code lattice 1s partitioned into two or more
regions based on lattice geometry. A compression engine 1s
coupled to each logical qubit of the/logical qubits. Each
compression engine 1s configured to compress syndrome
data generated by the surface code lattice using a geometry-
based compression scheme. A decompression engine 1s
coupled to each compression engine. Each decompression
engine 1s configured to receive compressed syndrome data,
decompress the received compressed syndrome data, and
route the decompressed syndrome data to a decoder block.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows an example quantum com-
puting organization.

FIG. 2 schematically shows aspects of an example quan-
tum computer.

FIG. 3 illustrates a Bloch sphere, which graphically
represents the quantum state of one qubit of a quantum
computer.

FIG. 4 schematically shows a logical qubit 1n a lattice
with alternating data and parity qubats.

FIG. 5§ schematically shows two consecutive rounds of
syndrome measurements.

FIG. 6 1s a plot indicating memory capacity required to
store syndrome measurement data under varying conditions.

FIG. 7 schematically shows example compression
schemes.

FIG. 8 schematically shows a plurality of regions on a
surface code lattice for Geometry-based compression.

FIG. 9 shows an example method for compressing syn-
drome data within a quantum computing device.
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FIG. 10 shows an example method for compressing
syndrome data within a quantum computing device using a

geometry-based compressor.

FIG. 11 schematically shows an example decoder design.

FIG. 12 schematically shows an example Union-Find
Decoder.

FIG. 13 schematically shows an example Graph Genera-
tor module.

FIG. 14 schematically shows the state of the major
components 1n the Graph Generator module during 1n graph
generation.

FIG. 15 schematically shows example clusters and root
table entries.

FIG. 16 schematically shows a Depth First Search Engine
and an example graph for error correction.

FIG. 17 shows examples of peeling for an example error
graph performed 1n the Correction Engine.

FIG. 18 shows an example method for implementing a
pipelined version of a hardware Umon-Find decoder.

FIG. 19 schematically shows a baseline organization for
L logical qubits.

FIG. 20 shows an example design for a decoder block.

FIG. 21 schematically shows an example micro-architec-
ture of a scalable fault-tolerant quantum computer.

FIG. 22 shows an example method for routing syndrome
data within a quantum computing device.

FIG. 23 schematically shows a Monte Carlo simulator
framework.

FIG. 24 1s a plot indicating mean compression ratios for
different error rates across code distances.

FIG. 25 15 a plot indicating average cluster diameter for
different error rates and code distance for a logical qubat.

FIG. 26 1s a plot indicating total memory capacity
required for implementing Spanning Tree Memory.

FIG. 27 1s a plot indicating a distribution of a number of
edges 1n a cluster for a fixed code distance and physical error
rate.

FIG. 28 1s a plot showing an average number of edges 1n
a cluster for diflerent code distances and error rates.

FIG. 29 1s a plot indicating the correlation between the
execution times in the Graph Generator Module and Depth
First Search Engine.

FIG. 30 1s a plot indicating a distribution of execution
time for decoding 3D graphs

FIG. 31 shows a schematic view of an example classical
computing device.

DETAILED DESCRIPTION

Qubits, the fundamental units of information in quantum
computers, are prone to high error rates. To enable fault
tolerant quantum computation, active error correction may
be applied to these qubits. Quantum Error Correction Codes
(QECC) encode logical qubits using redundant data and
parity qubits. Error correction diagnoses the errors on data
qubits by analyzing the measurements of the parity qubits
through a process called error decoding. At present, most
decoding approaches target qubit error at the algorithmic
level and do not account for the underlying device technol-
ogy that will be used to design them.

Herein, architectural challenges involved in designing
these decoders are targeted, and a 3-stage pipelined micro-
architecture for a hardware implementation of the Union-
Find decoder 1s described. The error correction algorithms
are designed to fit the hardware implementation. The feasi-
bility of data compression for different noise regimes 1s
evaluated with regard to the amount of storage and band-
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width required for implementation. An architecture that
scales the proposed decoder design for a large number of
logical qubits and enables practical, fault-tolerant quantum
computation 1s disclosed. Such a design may reduce the total
cost of each of the three pipeline stages by 2x, 4%, and 4x,
respectively, through resource sharing across multiple logi-
cal qubits without impacting the decoder correctness and
error threshold. As one example, for a code distance of 11
and a physical error rate on the order of 107>, the logical
error rate is 107°.

Quantum computing uses quantum mechanical properties
to enable computations for specific applications that would
otherwise not be feasible to perform 1n a reasonable amount
of time on conventional (1.e., nonquantum), state-of-the-art
computers. Example applications include prime factoriza-
tion, database search, physics and chemistry simulations.
The fundamental umt of computation on a quantum com-
puter 1s a qubit. Qubits inevitably interact with the environ-
ment and lose their quantum state. Imperfect quantum gate
operations compound this problem, since quantum gates are
unitary transformations chosen from a continuum of pos-
sible values and thus cannot be implemented with perfect
accuracy. To protect quantum states from noise, QECCs
have been developed. In any QECC, logical qubits are
encoded using several physical qubits to enable fault tolerant
quantum computations. Fault tolerance incurs resource over-
heads (typically 20x-100xper logical qubit) and 1s not
practically feasible on the small prototype machines cur-
rently available. However, Quantum Error Correction 1s
believed to be very valuable, 11 not outright necessary, in
order to run useful applications on fault-tolerant quantum
computers.

QECCs differ from classical error correction techniques
like Triple Modular Redundancy (TMR) or Single Error
Correction Double Error Detection (SECDED). The difler-
ences arise from the fundamental properties and high error
rates of qubits (typically in the order of 107%). For example,
qubits cannot be copied (no-cloning theorem) and lose their
quantum state when measured. QECCs use redundant qubaits
to create a code space by using ancilla qubits that mteract
with data qubits. By measuring the ancilla qubaits, 1t 1s
possible to detect and correct errors on the data qubits using
a decoder.

The error decoding algorithm specifies how a syndrome
(the outcome of ancilla measurements) will be processed to
detect errors 1n an encoded block of data qubits. The design
and performance of a decoder depends on the decoding
algorithm, QECC, physical error rate, noise model, and
implementation technology. For practical purposes, decod-
ers must process syndrome measurements faster than the
rate at which errors occur. They must also account for the
technology specific constraints for operation inside a cryo-
genic environment and scale to a large number of qubits.

Perfect error decoding 1s NP-hard (non-deterministic
polynomial-time) with exponential time complexity. There-
fore, optimal decoding algorithms trade-ofil error correction
capability to reduce time complexity. Most decoding tech-
niques have only been studied at the algorithmic level and do
not account for the underlying implementation technology,
even though decoders are seminal to fault tolerant quantum
computing. Other approaches, such as look-up table based or
deep neural decoders are not scalable to a large number of
qubits. The Union-Find decoder algorithm 1s simple and has
nearly linear time complexity, making 1t a suitable candidate
for scalable, fault-tolerant quantum computing. Herein, a
micro-architecture for a hardware implementation of the
Union-Find decoder 1s disclosed, wherein the algorithm 1s
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redesigned to reduce the hardware complexity, and to allow
scaling to a large number of logical qubats.

To enable faster processing and to reduce transport laten-
cies decoders are designed to operate very close to the
physical qubits (at 77 K or 4 K) as opposed to room
temperature (300 K). An example quantum computing sys-
tem 100 indicating a temperature gradient 105 1s shown in
FIG. 1. Quantum computing system 100 includes one or
more qubit registers 110 operating at 20 mK, a decoder 115
and controller 120, typically operating at either 4 K or 77 K,
and a host computing device 125 and an end user computing
device 130 operating at 300 K (room temperature). Depend-
ing upon whether decoder 115 operates at 77 K or 4 K, the
underlying implementation technology and design con-
straints offer different trade-offs. Superconducting logic
designs at 4 K offer close proximity to the physical qubits
and significant energy-efliciency, but are limited by device
densities and memory capacities. Operating a conventional
CMOS at 77 K can facilitate complex designs for applica-
tions with larger memory footprint, but it 1s less energy-
cllicient than superconducting logic and incurs data trans-
mission overheads 1n moving data back and forth from the
physical qubits resident at 15-20 mK.

Herein, a micro-architecture for a hardware implementa-
tion of the Union-Find decoder 1s disclosed. The implemen-
tation challenges associated with memory capacity and
bandwidth for operation 1n a cryogenic environment are
discussed. Surface code 1s used as an example for the
underlying QECC and various noise models, though other
implementations have been considered. Surface code 15 a
promising QECC candidate that arranges a group of qubits
in a 2-dimensional layout with alternating data and ancilla
qubits. Any error in a data qubit may be detected by 1ts
adjacent ancilla qubits, thereby requiring only nearest neigh-
bor connectivity. The feasibility and scalability of such a
design 1s described for large scale fault-tolerant quantum
computers.

Herein, systems and methods are disclosed that solve
numerous problems in the field of quantum computing. For
example, QEC decoder design 1s analyzed, with their place-
ment 1n the thermal domain and design complexity involved.
A micro-architecture for a hardware implementation of the
Union-Find decoder 1s presented which demonstrates that 1t
1s more practical to operate the decoder at 77 K.

The memory capacity required to store syndrome mea-
surement 1s computed, and shown that 1t may not be feasible
to store them in superconducting memories at 4 K. However,
transporting the data to 77 K requires large bandwidth. To
overcome both of these challenges, techniques are presented
that can be used to compress the syndrome measurement
data. Implementations of dynamic zero compression and
sparse representation are described. In addition, a geometry-
based compression scheme 1s presented that takes into
account the underlying structure of the surface code lattice.
Additionally, compression schemes and their applicability
are described for diflerent noise regimes.

The Union-Find decoder algorithm 1s refined 1n order to
reduce hardware costs and for improved implementation in
enhanced noise models. The original Union-Find decoding
algorithm only accounts for gate errors on data qubits that
pair 1n space. The hardware micro-architecture described
herein also accounts for measurement errors that pair in time
and are decoded using several rounds of syndrome measure-
ments.

Additionally, a hardware system architecture i1s described
that scales these decoders for a large number of logical
qubits. Such an implementation may take into account the
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difference 1n utilization of the pipeline stages 1n individual
decoding units and enables optimal sharing of resources
across multiple logical qubits to reduce the hardware cost.

A qubit 1s the basic unit of information on a quantum
computer. The fundamentals of quantum computing rely on
two quantum mechanical properties: superposition and

entanglement. A qubit may be represented as a linear com-
bination of 1ts two basis states. If the basis states are 10> and
11>, a qubiti¥> can be represented as [W>=al0>+1>,
where a,8E C and lal*+IB81°=1. The state of a qubit changes
when the magnitude or/and phase of the probability ampli-
tudes o, change. For example, a magnitude tlip (or bit-flip)
changes the state of IW> to Bl0>+all>. Alternately, a
phase-flip changes its state to al0>-311>. Quantum instruc-
tions modily the probability amplitudes using quantum gate
operations that are represented using 1dentity (I) and Pauli
matrices. Pauli matrices X, Z, and Y denote the effects of
bit-flip, phase-flip, or both respectively.

In some embodiments, the methods and processes
described herein may be tied to a quantum computing
system of one or more quantum computing devices. FIG. 2
shows aspects of an example quantum computer 210 con-
figured to execute quantum-logic operations (vide infra).
Whereas conventional computer memory holds digital data
in an array ol bits and enacts bit-wise logical operations, a
quantum computer holds data in an array of qubits and
operates quantum-mechanically on the qubits in order to
implement the desired logic. Accordingly, quantum com-
puter 210 of FIG. 2 includes at least one register 212
comprising an array of qubits 214. The 1llustrated register 1s
cight qubits in length; registers comprising longer and
shorter qubit arrays are also envisaged, as are quantum
computers comprising two or more registers of any length.

The qubits of register 212 may take various forms,
depending on the desired architecture of quantum computer
210. Each qubit 214 may comprise: a superconducting
Josephson junction, a trapped 10n, a trapped atom coupled to
a high-finesse cavity, an atom or molecule confined within
a fullerene, an 10n or neutral dopant atom confined within a
host lattice, a quantum dot exhibiting discrete spatial- or
spin-electronic states, electron holes 1n semiconductor junc-
tions entrained via an electrostatic trap, a coupled quantum-
wire pair, an atomic nucleus addressable by magnetic reso-
nance, a iree electron in hellum, a molecular magnet, or a
metal-like carbon nanosphere, as nonlimiting examples.
More generally, each qubit 214 may comprise any particle or
system ol particles that can exist in two or more discrete
quantum states that can be measured and manipulated
experimentally. For instance, a qubit may also be imple-
mented 1 the plural processing states corresponding to
different modes of light propagation through linear optical
clements (e.g., mirrors, beam splitters and phase shifters), as
well as 1n states accumulated within a Bose-Einstein con-
densate.

FIG. 3 1s an 1illustration of a Bloch sphere 216, which
provides a graphical description of some quantum mechani-
cal aspects of an individual qubit 214. In this description, the
north and south poles of the Bloch sphere correspond to the
standard basis vectors|0> and 11>, respectively—up and
down spin states, for example, of an electron or other
termion. The set of points on the surface of the Bloch sphere
comprise all possible pure states|W> of the qubit, while the
interior points correspond to all possible mixed states. A
mixed state ol a given qubit may result from decoherence
which may occur because of undesirable couplings to exter-
nal degrees of freedom.
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Returning now to FIG. 2, quantum computer 210 includes
a controller 218. The controller may comprise conventional
clectronic componentry, including at least one processor 220
and associated storage machine 222. The term ‘conven-
tional’ 1s applied herein to any component that can be
modeled as an ensemble of particles without considering the
quantum state of any individual particle. Conventional elec-
tronic components include integrated, microlithographed
transistors, resistors, and capacitors, for example. Storage
machine 222 may be configured to hold program instruc-
tions 224 that cause processor 220 to execute any process
described herein. Additional aspects of controller 218 are
described hereinaiter.

Controller 218 of quantum computer 210 1s configured to
receive a plurality of inputs 226 and to provide a plurality of
outputs 228. The mputs and outputs may each comprise
digital and/or analog lines. At least some of the mputs and
outputs may be data lines through which data 1s provided to
and extracted from the quantum computer. Other inputs may
comprise control lines via which the operation of the quan-
tum computer may be adjusted or otherwise controlled.

Controller 218 1s operatively coupled to register 212 via
interface 230. The interface 1s configured to exchange data
bidirectionally with the controller. The interface 1s further
configured to exchange signal corresponding to the data
bidirectionally with the register. Depending on the architec-
ture of quantum computer 210, such signal may include
clectrical, magnetic, and/or optical signal. Via signal con-
veyed through the interface, the controller may interrogate
and otherwise influence the quantum state held in the
register, as defined by the collective quantum state of the
array ol qubits 214. To this end, the interface includes at
least one modulator 232 and at least one demodulator 234,
cach coupled operatively to one or more qubits of register
212. Each modulator 1s configured to output a signal to the
register based on modulation data received from the con-
troller. Each demodulator i1s configured to sense a signal
from the register and to output data to the controller based
on the signal. The data received from the demodulator may,
In some scenarios, be an estimate of an observable to the
measurement of the quantum state held 1n the register.

More specifically, suitably configured signal from modu-
lator 232 may interact physically with one or more qubits
214 of register 212 to trigger measurement of the quantum
state held 1n one or more qubits. Demodulator 234 may then
sense a resulting signal released by the one or more qubits
pursuant to the measurement, and may furnish the data
corresponding to the resulting signal to the controller. Stated
another way, the demodulator may be configured to reveal,
based on the signal received, an estimate of an observables
reflecting the quantum state of one or more qubits of the
register, and to furnish the estimate to controller 218. In one
non-limiting example, the modulator may provide, based on
data from the controller, an appropriate voltage pulse or
pulse train to an electrode of one or more qubits, to 1nitiate
a measurement. In short order, the demodulator may sense
photon emission from the one or more qubits and may assert
a corresponding digital voltage level on an interface line into
the controller. Generally speaking, any measurement of a
quantum-mechanical state 1s defined by the operator O
correspondmg to the observable to be measured; the result R
of the measurement 1s guaranteed to be one of the allowed
eigenvalues of O. In quantum computer 210, R is statisti-
cally related to the register state prior to the measurement,
but 1s not uniquely determined by the register state.

Pursuant to appropriate input from controller 218, inter-
face 230 may be further configured to implement one or
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more quantum-logic gates to operate on the quantum state
held 1n register 212. Whereas the function of each type of
logic gate of a conventional computer system 1s described
according to a corresponding truth table, the function of each
type of quantum gate 1s described by a corresponding
operator matrix. The operator matrix operates on (i.e., mul-
tiplies) the complex vector representing the register state and
ellects a specified rotation of that vector in Hilbert space.

Continuing in FIG. 2, suitably configured signal from
modulators 232 of interface 230 may interact physically
with one or more qubits 214 of register 212 so as to assert
any desired quantum-gate operation. As noted above, the
desired quantum-gate operations are specifically defined
rotations of a complex vector representing the register state.
In order to effect a desired rotation O, one or more modu-
lators of interface 230 may apply a predetermined signal
level S, for a predetermined duration T,.

In some examples, plural signal levels may be applied for
plural sequences or otherwise associated durations. In a
more particular example, the plural signal levels and dura-
tions are arranged to form a composite signal waveform,
which may be applied to one or more qubits of the register.
In general, each signal level S, and each duration T, 1s a
control parameter adjustable by appropriate programming of
controller 218. In other quantum-computing architectures,
different sets of adjustable control parameters may control
the quantum operation applied to the register state.

(Qubits 1nevitably lose their quantum state through their
interactions with different degrees of freedom in their sur-
roundings. Even if qubits could be perfectly 1solated from
environmental noise, quantum gate operations are imperiect
and cannot be applied with precise accuracy. This poses
various limitations in running any application on a quantum
computer. Thus, the quantum states manipulated by a quan-
tum computer must undergo error correction using Quantum
Error Correction Codes (QECCs). A QECC encodes a logi-
cal qubit 1nto a collection of physical qubits such that the
error rate of the logical qubit 1s lower than the physical error
rate. QECC enables fault tolerant quantum computations as
long as the physical error rate 1s below an acceptable
threshold at the expense of an increased number of physical
qubits. In recent years, several error correction protocols
have been proposed. Herein, surface code 1s applied, which
1s considered the most promising QECC for fault tolerant
quantum computing. QEC models any arbitrary noise as a
superposition ol quantum operations. Thus, QECCs capture
the eflect of errors as a bitflip, phase tlip, or a combination
of both using Pauli1 matrices.

Surface code 1s widely considered suitable for scalable
fault tolerant quantum computing. It encodes a logical qubit
in a lattice with alternating data and parity qubits. A sche-
matic representation of such a lattice 1s shown at 400 of FIG.
4, lattice 400 having a 2D distance-3 (d=3) surface-code.
Each X stabilizer 402 and Y stabilizer 404 1s coupled to 1ts
adjacent data qubits 406. Each data qubit 406 only interacts
with 1ts nearest neighboring parity qubits 408, and thus by
measuring the locally supported operators, errors on the data
qubits 406 can be diagnosed as shown at 410. In this
example, a Z-error 412 on data qubit A 414 1s captured by
parity qubits PO 416 and P1 418. Similarly, an X-error 420
on data qubit B 422 1s captured by parity qubits P2 424 and
P3 426. In the simplest realization, a surface code of distance
d uses (2d-1)* physical qubits to store a single logical qubit,
where d 1s a measure of redundancy and error tolerance. A
larger code distance results in greater redundancy and
increased error tolerance.
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The logical operators include a string of single qubit
operators between two opposite edges. The code space 1s the
subspace for which all stabilizer generators (as shown 1n
FIG. 4) have +1 eigenvalue. By construction, logical states
are ivariant under the application of a stabilizer generator.
The application of any closed loop of Pauli operators will
leave the logical state invariant. The measurement of the
stabilizer generators detects the endpoints of a chain of
errors. Brror correction 1s based on this information and the

stabilizer measurement 1s referred to as a syndrome.

In QEC, the efect of an error 1s reversed by applying the
appropriate Pauli gate. For example, 11 a qubit encounters a
bit-flip error, applying the Pauli X gate flips 1t back to the
intended state. It has been shown previously that as long as
Chifford gates are applied on qubits, there 1s no need to
perform active error correction. Instead, keeping track of
Pauli frames in software 1s suflicient. Thus, the primary
focus of quantum error correction 1s error decoding, rather
than error correction. Optimal error decoding 1s a compu-
tationally hard problem. Quantum error decoders take a
syndrome measurement as input and return an estimation of
the error 1n the data qubits. Besides their ability to detect
errors, decoders rely on a high operational speed to prevent
accumulation of errors. In other words, errors must be
detected faster than they occur.

Since error decoding must be fast, decoders must ofler
high performance and operate close to the physical qubits.
As described with regard to FIG. 1, qubits are typically
operated at 15-20 milliKelvins. Depending upon whether a
decoder 1s designed for operation at 4 K or 77 K, the
implementation technologies offer different trade-ofls as
specified 1n Table 1. Hardware designed to operate at 4 K
must meet stringent power requirements owing to the prox-
imity to the physical qubits. This 1s to ensure the thermal
noise stays under control. Additionally, these designs must
be cooled using sophisticated and expensive liquid Helium
coolers. Decoders may be designed using either CMOS or
superconducting logic at 4 K. CMOS has power dissipation
and therefore cannot be used in large scale quantum com-
puters. Superconducting logic offer low power consumption
but suflers from major drawbacks such as limited device
densities and low memory capacities, making it extremely
dificult to fabricate complex and large designs. Traditional
CMOS operating at 77 K offers the capability to design
complex systems with larger memory and power budgets.
The cooling overheads associated with 77 K 1s an order of
magnitude lower than for 4 K. However, a decoder designed
to operate at 77 K must account for the transport latencies
and meet the bandwidth required in transferring data back
and forth between 4 K and 77 K. The trade-ofls between
superconducting technology at 4 K and CMOS at 77 K are
listed 1n Table 1.

TABLE 1

Superconducting Traditional
Parameter Technology CMOS
Operating 4 K 77 K
Temperature
Operating Frequency 10 GHz 4 GHz
Memory Capacity 123-512 Bytes 4 Gb
Power Budget 1 W N/A
Feature Size 248 nm 7-16 nm
Cooling Overheads 1000x/400x 10x

Herein, the challenges 1n designing the micro-architecture
of a decoder for quantum error correction under realistic
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noise models are examined. QQubit errors can be broadly
classified into three types: decoherence errors, gate errors,
and measurement errors. Qubits retain theiwr quantum state
only for short duration of time (referred to as the decoher-
ence time) leading to decoherence errors. Non-ideal gate
operations lead to gate errors on qubits. Imperfections 1n
qubit measurements lead to measurement errors. A decoder
may misinterpret a syndrome measurement error as a data
qubit error and correct a non-erroneous data qubit, thereby
introducing an error. A decoder must take into account such
syndrome measurement errors while decoding errors. This
directly impacts the micro-architecture and design choices
of the decoder.

FIG. 5 shows a diagram 500, indicating two consecutive
rounds of syndrome measurements 502 and 504, and show-
ing how measurement errors 506 pair 1n time and data qubat
errors 508 pair 1n space. Diagram 3500 shows that if the
decoder only examines the measurement outcomes of Round
0 502, it will misinterpret the error on parity qubit PO 510
and force a correction for DO 3512 which 1s error-iree.
Current decoders tackle syndrome measurement errors by
examining d rounds of measurements where d 1s the code
distance. The data generated by d rounds of syndrome
measurements and an error log per data qubit must be stored
for a decoder to function correctly. This requires up to
several megabytes of storage (depending on the code dis-
tance and number of logical qubits).

FIG. 6 shows an example plot 600 indicating memory
capacity (in KBs) required to store syndrome measurement
data for d (code distance) rounds and error log for N logical
qubits. The required capacity 1s much higher than available
memory 1n superconducting logic at 4 K. In order to perform
error decoding at 77 K, the measurement data must be
transported from 4 K to 77 K. For a given qubit plane with
L logical qubits and each qubit encoded using a surface code
of distance d, 2d(d-1)L bits must be sent at the end of each
syndrome measurement cycle. Assuming a reasonable num-
ber of logical qubits and code distance, the 4 K-77 K links
require bandwidth ranging in the order of several Gb/s. Data
transmission at a lower bandwidth reduces the effective time

left for error decoding since 1t must provide an estimation of

the error within d syndrome measurement cycles (e.g.,
surface code cycles may be broken down 1n to d syndrome
measurement cycles). Thus, a major challenge 1n designing
any decoder at 77 K 1s the very large bandwidth required.

One approach to efliciently deal with capacity and band-
width requirements i caches and main memory 1s data
compression. The sparsity of the measurement data may be
analyzed and estimated analytically as described herein. For
example, let p be the probability of a Z-error on a data qubait
and let u be the indicator vector of errors for n data qubaits

(Note that the same analysis holds true for X syndromes). If

there are 4 data qubits and the first two have Z errors, then
u=1100. Assuming an 1dentical and independent distribution
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a syndrome 1s given by Equation (1), where lul 1s the
Hamming weight (e.g., number of 1s) of the error indicator
vector u.

P (z9=p“(1-py='* (Eq 1)

Thus, the probability that there are m or more errors 1s
given by Equation 2:

P (7« with [ul=m)=C,"p™ (Eq 2)

Using union-bound, the upper bound of the total number
of syndrome bits s(Z*) 1s given by Equation 3.

s(Z)=2u| (Eq 3)
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Assuming a code distance of 11 and an error rate of 1077,
the probability of having 10 or more errors (a reasonably
large number of errors for the given code distance) is
6.2x10~"*. Thus, the probability to observe a syndrome with
a large Hamming weight 1s extremely low. This analysis
shows 1t 1s possible to compress syndrome data to reduce
storage overheads of storage and/or meet the bandwidth
requirements. Diflerent compression techniques for syn-
drome data are described herein, as the usefulness of a
compression techmque depends on the entropy of data.
Herein, three compression techniques are described, though
others have been considered. The diflerent noise regimes
they can be applied to are analyzed. The described examples
cach feature compression schemes that use simple encoding
and do not require large hardware complexity.

Dynamic Zero Compression (DZC) was originally intro-
duced to reduce energy required for cache accesses of
zero-valued bytes. A similar technique may be adopted to
compress syndrome data. One example 1s shown at 700 of
FIG. 7. A syndrome 705 of length L 1s grouped into K blocks
of W bits each, where W 1s the compression width 710. Extra
padding zeros may be added 11 the last block has less than
W bits. A K-bit wide Zero Indicator Bit (ZIB) vector 7135
includes 1 bit per block. If all the bits of the i”” block are Os,
the corresponding bit 1n the ZIB(ZIBJ[1]) may be set to 1.
Otherwise, the bit may be set to 0. The data to be transmitted
720 may be obtained by appending the non-zero blocks 725
at the end of the ZIB vector.

Sparse Representation, as shown at 750, may be consid-
ered similar to the traditional techmique of storing sparse
matrices where the non-zero elements of a sparse matrix 760
are stored by only storing the row and column indices 765.
A Sparse Representation Bit (SRB) 755 1s used to indicate
if all the syndrome bits are zero. If there are one or more
non-zero bit 1n the syndrome, the SRB may be unset and the
indices 755 of the non-zero elements may be sent alongside
the SRB 1n the transmitted data 7785.

Geometry-based compression (Geo-Comp) may be con-
sidered an adaptation of DZC that also accounts for the
geometry of the surface code lattice. Rather than compress-
ing X and Z syndromes separately, a geometry-based com-
pression scheme may compress regions of X and Z syn-
dromes together. The entire surface code lattice may be
partitioned into multiple regions with each region roughly
containing an equal number of syndrome bits (similar to
compression width 1n DZC). FIG. 8 schematically shows a
surface code lattice 800 including multiple regions (801,
802, 803, 804; indicated by dotted lines) for Geometry-
based compression. FIG. 8 shows one example of how a
surface code lattice of distance 5 may be partitioned 1n to 4
regions. Using a ZIB for each region and transmitting only
syndrome data from the non-zero regions, the syndromes
may be compressed. When a Y error occurs on a data qubit,
both X and Z syndrome bits flip to indicate the error. When
the two types of syndromes are compressed 1ndependently,,
the total number of non-zero blocks 1s higher for a given
compression width. For example, 1t the data qubit DO 810

shown 1n FIG. 8 encounters an Y error, X syndrome bits X0
811 and X1 812 and Z syndrome bits Z0 813 and 71 814 flip.

In compression schemes such as DZC, (X0 811, X1 812) and
(Z0 813, 71 814) lie on diflerent data blocks and are
compressed separately. However, 1f the geometry of the
lattice 1s taken into account, the non-zero syndrome bits
typically lie mside the same region unless the data qubit 1s
on the region boundary (for example, D1 815 1n lattice 800).

In general, the number and size of the regions may be
adjusted for a given noise model by computing the expected
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number of blocks that contains trivial syndromes (all zeros).
However, larger sized regions lead to complex hardware by
adding to the logic depth. Thus, small region sizes (depend-
ing on the code distance) may be analyzed even for very low
error rates. Regions need not be equal 1n size, and the size
and/or number of regions may be determined based on an
expected number of data blocks that contain trivial syn-
dromes.

FIG. 9 shows an example method 900 for compressing
syndrome data within a quantum computing device. In some
examples, method 900 may be implemented by a quantum
computing device comprising a hardware implementation of
the Union-Find decoder, such as the decoder schematically
depicted 1n FIG. 12.

At 910, method 900 includes generating syndrome data
from at least one quantum register including/logical qubits,
where/1s a positive integer. The generated syndrome data
may include at least X syndrome data and Z syndrome data.

At 920, method 900 includes, for each logical qubat:
routing the generated syndrome data to a compression
engine, the compression engine configured to compress
syndrome data. The quantum computing device may include
a plurality of compression engines. In some examples, at
least one of the compression engines 1s configured to com-
press the syndrome data using dynamic zero compression. In
some examples, at least one of the compression engines 1s
configured to compress the syndrome data using sparse
representation. In some examples, at least one of the com-
pression engines 1s configured to compress the syndrome
data using geometry-based compression. The quantum com-
puting device may include two or more sectors of logical
qubits that are coupled to two or more types of compression
engine. In some examples, method 900 may include oper-
ating the compression engine at 4 K. However, higher (e.g.,
8 K) or lower (e.g., 2 K) temperatures may be used.

Continuing at 930, method 900 includes, routing the
compressed syndrome data to a decompression engine, the
decompression engine configured to: receive compressed
syndrome data; and decompress the recerved compressed
syndrome data. At 940, method 900 includes routing the
decompressed syndrome data to a decoder block. In some
examples, the decompressed syndrome data may be routed
to a Graph-Generator module of the decoder block. In some
examples, method 900 may include operating the decom-
pression engine and/or the decoder blocks at 77 K. However,
higher (e.g., 85 K) or lower (e.g, 70 K) temperatures may be
used. In some examples, the quantum computing device
comprises a set ol d decoder blocks, where d<2*1.

FIG. 10 shown an example method 1000 for compressing
syndrome data using geometry-based compression within a
quantum computing device. In some examples, method
1000 may be implemented by a quantum computing device
comprising a hardware implementation of the Union-Find
decoder, such as the decoder schematically depicted in FIG.
12.

At 1010, method 1000 includes generating syndrome data
from at least one surface code lattice including 1 logical
qubits, where 1 1s a positive integer, the surface code lattice
partitioned into two or more regions based on lattice geom-
etry, as shown 1n FIG. 8, for example. In some examples, the
number of regions may be determined based on an expected
number of data blocks that contain trivial syndromes.

At 1020 method 1000 includes, for each logical qubat:
routing the generated syndrome data to a compression
engine, the compression engine configured to compress
syndrome data using geometry-based compression. At 1030,
method 1000 includes compressing syndrome data using a
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zero indicator bit for each region of the two or more regions
of the surface code lattice. At 1040, method 1000 includes
transmitting syndrome data only from non-zero regions. In
other words, it may be assumed, that 11 data 1s not received
from a region, the region only includes trivial (e.g., all-zero)
data.

At 1050, method 1000 includes routing the compressed
syndrome data to a decompression engine, the decompres-
sion engine configured to: receive compressed syndrome
data; and to decompress the recerved compressed syndrome
data. The decompression engine may be programmed based
on the geometry-based compression scheme used by the
compression engine

A decoder 1n QEC 1s used to process syndrome measure-
ment data and identify errors which corrupt data qubaits.
Herein, improvements are made to the micro-architecture
for a hardware implementation of the Union-Find decoder
for surface code. In surface code, measurement of local
operators on a lattice of qubits and processing the syndrome
using a decoder generates an estimate of the most likely
errors on the data qubits. The decoder micro-architecture 1s
designed to prevent accumulation of errors while keeping
the hardware complexity low to meet the strict power
budgets of operation 1n a cryogenic environment. The archi-
tecture presented herein 1s designed to support scaling up to
thousands of logical qubits to enable fault-tolerant quantum
computing.

Quantum error decoding 1s an NP-hard problem. There-
fore, most decoding algorithms trade-ofl error thresholds for
lower time and algorithm complexity. One promising error
decoding techmique 1s the graph-based Minimal Weight
Perfect Matching IMWPM) decoder. Although it offers high
error thresholds, MWPM decoder suflers from high time
complexity (O(n*)). Alternately, a simple approach to design
decoders 1s based on using a look-up table. The table is
indexed by the syndrome bits and the corresponding entry
stores the error information for the data qubits. However,
look-up table decoders are not scalable and require terabytes
of memory even for small code distances. Deep neural
decoders are popular and learn the probability density tunc-
tions of the possible errors corresponding to the sequences
of measured syndromes in the training phase. Using infer-
ence, the error pattern for a given syndrome 1s evaluated.
However, neural decoders require more hardware for com-
puting and are not scalable when the code distance increases.
The recently proposed Union-Find decoder presents an
algorithm that forms clusters around non-trivial syndromes
(non-zero syndromes) and uses graph traversal to correct
errors 1n almost linear time. The Union-Find decoder thus
oflers simplicity, time complexity, and high error thresholds.

The operation of the Union-Find decoder 1s shown 1n FIG.
11. At 1100, each edge on the graph 1102 represents a data
qubit and each vertex represents a parity qubit (e.g., 1104,
1106). Decoding starts by growing spanning forests 1108 to
cover all the erroneous syndrome bits to form one or more
even clusters as shown at 1110. Data qubits A 1112 and B
1114 can be assigned unknown Pauli errors 1116 and 1118,
respectively. By traversing through the forest, errors can be
detected as shown at 1120. Cluster traversal steps (shown at
1122, 1124) may be used to detect, classity (e.g., Z errors),
and correct errors.

An adaptation of this algorithm may be implemented, as
shown 1 block diagram 1200 of FIG. 12. Compressed
syndrome data 1210 1s routed to a decompression engine
1215. Decompressed syndrome data 1220 1s then routed to
a Graph Generator (Gr-Gen) module 12235. Gr-Gen module

1225 may be configured to generate spanning tree memory




US 11,755,941 B2

13

(STM) data. A Depth-First Search (DFS) engine 1230 may
be configured to access the STM data, and to generate edge
stacks based on the STM data. Correction (Corr) engine
1235 may be configured to access the edge stacks, generate
memory requests based on the accessed edge stacks, and to
update an error log 1240.

If syndrome measurement errors are 1gnored, the decod-
ing 1s performed using 2D graphs generated from a single
round of syndrome measurement. In order to account for
faulty measurements, d consecutive rounds of syndrome
measurements must be decoded together, where d 1s the code
distance, leading to 3D graphs. The Union-Find decoder
may be used 1n both of these cases. The main difference 1s
the amount of memory required which grows quadratically
(for 2D) or cubically (for 3D) with the code distance of the
surface code. The micro-architecture of the Union-Find
decoder 1s described herein in 2D for the sake of simplicity
and generalized for 3D. All relevant results described are
obtained for 3D graphs. The decoding design includes of 3
pipeline stages, enabling improved design scaling.

The Gr-Gen module takes the syndrome as an 1mput after
decompression and generates a spanning forest by growing
clusters around non-trivial syndrome bits (non-zero syn-
drome bits). The spanning forest may be built using two
tundamental graph operations: Union( ) and Find( ). FIG. 13
schematically shows an example Gr-Gen module 1300.
Module 1300 includes the Spanning Tree Memory (STM)
1310, a Zero Data Register (ZDR) 1315, a root table 1320,
a size table 1325, parity registers 1330, and a fusion edge
stack (FES) 1335. This design 1s slightly different from the
previously described Union-Find algorithm to reduce the
cost of hardware resources. The size of each component 1s
a function of the code distance d. STM 1310 stores 1 bit for
cach vertex, and 2 bits per edge. 2 bits per edge are used
since clusters grow around a vertex or existing cluster
boundary by half edge width as per the original algorithm.
The ZDR 1315 stores 1 bit per STM row. If the contents of
a row are 0, the bit stores a 0, and 11 at least one of the bits
in a row 1s 1, the ZDR bit for the corresponding row stores
a 1. Since syndrome data 1s sparse and the total number of
edges 1n the spanning forest will below, the ZDR 1315
speeds up the STM 1310 traversal. FES 1335 stores the
newly grown edges so that they can be added to existing
clusters. The root table 1320 and size table 1325 store the
root and size of a cluster respectively. The tree traversal
registers 1340 store the vertices of each cluster visited in the
Find( ) operation. An interface 13435 between the Gr-Gen
module and a DFS engine may allow the DFS engine to
access data stored at STM 1310.

The root table entries (Root Table[1]) are initialized to the
indices (1) as shown 1n FIG. 14. The size table entries for the
non-trivial syndrome bits are initialized to 1 as shown at
1400. These tables aid the Union( ) and Find( ) operations to
merge clusters after the growth phase, as shown at 1410, into
a final state, as shown at 1420. They are indexed by cluster
indices. The tables are sized for the maximum number of
clusters possible which equals to the total number of vertices
in the surface code lattice. The boundary list of each cluster
may be stored. However, the average cluster diameter 1s very
small 1n the noise regime that 1s relevant for practical
applications. Cluster diameter may be defined as the maxi-
mum distance between two vertices on a cluster boundary.
Thus, the boundary list may not be stored, and instead the
boundary indices may be computed in the cluster growth
phase. The original algorithm grows all odd clusters until the
parity 1s even. Thus, odd clusters must be detected quickly.
To do the same, parity registers may be used as shown 1n
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FIG. 11. The panity registers may store 1 bit parity per cluster
depending upon whether 1t 1s odd or even. For a reasonable
code distance of 11, seven 32-bit registers may be suflicient.
For larger code distances, the additional parity information
may be stored 1n the memory and read 1n advance 1n order
to hide the memory latency.

The control logic may read the parity registers and grow
clusters with odd panity (called the growth phase) by writing
to the STM, ZDR, and adding newly added edges that
touches other cluster boundaries to the FES. The STM may
not be updated for edges that connect to other clusters to
prevent double growth. It may be updated when clusters are
merged by reading from the FES. The logic may check if a
newly added edge connects two clusters by reading the root
table entries of the vertices connected by the edge (call these
the primary vertices). This 1s equivalent to the Find( )
operation. The vertices visited on the path to find the root of
cach primary vertex are stored on the tree traversal registers
as shown at 1500 1n FIG. 15. The root table entries for these
vertices may be updated to directly point to the root of the
cluster to minimize the depth of the tree for future traversals,
as shown at 1510. This operation, called path compression,
1s included 1n Union-Find algorithms and allows for keeping
the depth of the trees short, amortizing the cost of the Find(
) operation. For example, at 1500, FIG. 15 shows the state
of two clusters and a root table at some instant of time.
Assume that after a growth step, vertices 0 and 6 are
connected and the two clusters must be merged. The tree
traversal registers may be used to update the root of vertex
0 as shown at 1500. Since the depth of the tree 1s continu-
ously compressed, only a few registers are suilicient. In one
example, 5 registers are used per primary vertex, though
more or fewer registers may also be used. If the primary
vertices belong to different clusters, the root of the smaller
cluster may be updated to point to the root of the larger
cluster.

The DFS engine may process the STM data produced by
the Gr-Gen that stores the set of grown even clusters. It may
use the DFS algorithm to generate the list of edges that
forms a spanning tree for each cluster in the STM. In other
examples, a breadth first search exploration may be used,
though DFS 1s generally more memory eflicient. An example
DFS engine 1s shown at 1600 of FIG. 16. The logic may be
implemented using a finite state machine 1610 and two
stacks 1620 and 1622. Stacks may be used since the order 1n
which edges are visited 1n the spanning tree may be reversed
to perform correction by peeling. The edge stack 1620 may
store the list of visited edges while the pending edge stack
1622 may store the edges that will be visited 1n the on-going
DEFES later. For example, as shown at 1630 of FIG. 16, when
the FSM visits vertex 1 of the spanning forest, edge a 1s
pushed to the edge stack and edge c1s pushed to the pending
edge stack. When the end of the current path is reached,
pending edges may be popped and traversed. To enable
pipelining and improve performance, the micro-architecture
may be designed to include an alternate edge stack 1632.
When there 1s more than one cluster, the correction engine,
via Corr engine interface 1640, may work on the edge list of
one of the traversed clusters when the DFS engine traverses
through the other. As shown at 1630, 1f edges a, b, ¢, and d
belong to cluster C0 and edges ¢ and (belong to cluster C1,
when the Corr Engine processes corrections for C0, DFS
engine 1600 may traverse through C1. This may help 1n
s1zing the stacks to deal with the average cluster size rather
than the worst-case cluster size. In a case where DFS Engine
1600 encounters a sufliciently large cluster which cannot fit
in one stack, alternate stack 1632 may be used and an




US 11,755,941 B2

15

overtlow bit may be set to indicate that both stacks 1620 and
1632 hold edges corresponding to a single cluster. This
proposed implementation may include a number of memory
reads that 1s directly proportional to the size of the clusters.
By going over STM 1310 row-wise, the eflective cost of
generating clusters 1s reduced. ZDR 1315 reduces the cost of
traversing STM 1310 row-wise.

The Corr Engine may perform the peeling process of the
decoder and may 1dentity the Pauli correction to apply. The
Corr engine may access the edge list (which 1s stored on the
stack) and syndrome bits corresponding to the vertices along
the edge list. The syndrome bits may be accessed by
decompressing the compressed syndrome and/or by access-
ing the STM. However, the former may increase the logic
complexity and latency while the latter may increase the
number of memory requests that the STM 1s required to
handle. To reduce the memory traflic and eliminate the need
for additional decompression logic, the syndrome 1mnforma-
tion may be saved along with the edge index information by
the DFS Engine. The temporary syndrome changes caused
by peeling are saved on local registers. Examples of peeling,
for an example error graph performed in the Corr Engine are
shown 1n FIG. 17. Example syndrome hold registers, error
logs, edge stacks, and error graphs are shown in FIG. 17 for
step 1 1700, step 2 1710, and step 3 1720. The Corr Engine
may also read the last surface code cycle error log and may
update the Pauli correction for the current edge. For
example, 1f the error on an edge €0 was Zin the previous
logical cycle and 1t encounters a Z error 1n the current cycle
too, the Paul1 error for €0 may be updated to I as shown at
1720.

FIG. 18 shows an example decoding method 1800 for a
quantum computing device. In some examples, decoding
method 1800 may be implemented by a quantum computing,
device comprising a hardware implementation of the Union-
Find decoder, such as the decoder schematically depicted 1n
FIG. 12.

At 1805, method 1800 includes receiving syndrome data
from one or more of a plurality of qubaits, such as logical
qubits residing 1n a quantum register. The received syn-
drome data may include X syndrome data and/or Z syn-
drome data.

At 1810, method 1800 includes decoding the received
syndrome data with a hardware implemented Umon-Find
decoder including two or more pipeline stages. As an
example, this may include the hardware implemented
Union-Find decoder shown 1n FIG. 12 which includes three
pipeline stages: a Graph-Generator module stage, a depth-
first search engine stage, and a Correction engine stage.
However, any number or combination of two or more
pipeline stages may be used.

Optionally, at 1820, decoding the syndrome data may
include, at a Gr-Gen module, generating a spanning forest by
growing clusters around non-trivial syndrome bits. In some
examples, the spanning forest may be generated using
Union( ) and Find( ) graph operations.

Optionally, at 1825, decoding the syndrome data may
include, at the Gr-Gen module, storing data regarding the
spanmng forest 1n a spanning tree memory (STM) and a zero
data register. In some examples, newly grown edges may be
stored at a fusion edge stack.

Optionally, at 1830, decoding the syndrome data may
include, at a DFS engine, accessing data stored in the STM.
Optionally, at 1835, decoding the syndrome data may
include, at the DFS engine, generating one or more edge
stacks based on the data stored 1n the STM. For example, as
shown 1n FIG. 16, generating one or more edge stacks based
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on the data stored in the STM may include generating a
primary edge stack including a list of visited edges. Addi-
tionally or alternatively, generating one or more edge stacks
based on the data stored 1n the STM may include generating
a pending edge stack including a list of edges that will be
visited. Additionally or alternatively, generating one or more
edge stacks based on the data stored in the STM may include
generating an alternate edge stack configured to hold surplus
edges from a cluster of the spanning forest.

Optionally, at 1840, decoding the syndrome data may
include, at a Corr engine, accessing one or more of the
generated edge stacks. Optionally, at 1845, decoding the
syndrome data may include, at the Corr engine, generating,
memory requests based on the accessed edge stacks. Option-
ally, at 1850, decoding the syndrome data may include, at a
Corr engine, performing iterative peeling decoding on each
accessed edge stack. Optionally, at 1855, decoding the
syndrome data may include, at a Corr engine, updating an
error log of the decoder based on results of the iterative
peeling decoding.

As discussed herein, decoding based on a single round of
measurement will not account for syndrome measurement
errors. To handle measurement errors, decoders examine d
(code distance) rounds of measurement. This type of error
correction may be handled with minimal changes to the
design. For example, instead of forming graphs on a 2D
plane, the decoder may analyze 3D graphs. Each vertex may
be connected to a maximum of 4 neighbors. Whereas, for the
3D graphs, each vertex may now have up to two additional
edges corresponding to the previous and next round of
measurement. To reduce the storage overheads an STM per
round ol syndrome measurement may be stored. The STM
may be optimized such that each row of the STM stores the
vertices of a row of the surface code lattice, edge informa-
tion for the vertices of the next row, and edge information
connecting the corresponding vertices in the surface code
lattice of the next round.

The compression techniques described herein may reduce
the amount of memory required to store syndrome data and
error log for the data qubits. However, the micro-architec-
ture of the Union-Find decoder also uses memory and the
total capacity required 1s far from the total capacity offered
by superconducting memories. Thus, this design may be
implemented by operating at 77 K using conventional
CMOS. This may also reduce the thermal noise generated 1n
the cryogenic environment close to the quantum substrate as
the design 1s physically located far from the quantum
substrate.

For the baseline design, a naive implementation may
allocate a decoder for each X syndrome and Z syndrome for
cach logical qubit as shown at 1900 of FIG. 19. FIG. 19
schematically shows the system organization for a large
number of logical qubits (L) within a quantum register 1910.
Quantum register 1910 1s shown to include logical qubit 0
19104, logical qubit 1 19105, and logical qubit 1 19101 as
representative logical qubits operating at 15-20 mK. Each
logical qubit 1s configured to receive signals from control
logic 1915 and to output syndrome data to a compression
engine (e.g., 1920q, 192056 . . . 1920/). Both control logic
1915 and compression engines 1920q . . . 1920/ are shown
as operating at 4 K, a higher temperature than for the
quantum register. However, higher (e.g., 8 K) or lower (e.g.,
2 K) temperatures may be used.

Each compression engine routes compressed syndrome
data to a decompression engine (1925a, 19255 . . . 1925/)
operating at 77 K. The decompression engines decompress
the compressed syndrome data, and route decompressed X
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and 7Z syndrome data to decoding block 1930. In this
example, each decompression engine 1s coupled to a pair of

pipelined Union-Find decoders (1935q, 19355, 1935c,
19354 . .. 1935k, 1935/) operating at 77 K. Each Unmion-Find
decoder analyzes syndrome data received from a decom-
pression engine and updates error log 1940. Although shown
as operating at 77 K, higher (e.g., 85 K) or lower (e.g, 70 K)
temperatures may be used for operating the decompression
engines and decoders, though the operating temperature for
the decompression engines and decoders may generally be
higher than that for the compression engines.

Thus, for the baseline design, the decoding logic may use
2L Union-Find decoders per logical qubit. In this imple-
mentation, each logical qubait uses 1ts own dedicated decod-
ers. However, the utilization of each pipeline stage may vary.
Hence, the architecture shown at 1900 may not provide the
optimal allocation of resources. For a large number of
qubits, the on-chip components are under-utilized and dis-
sipate heat. Since the entire system 1s operated at 77 K, an
increased power dissipation linearly increases the cost of
cooling.

As such, the architecture of a decoder block may be used

that includes reduced number of pipeline units. An example
design for such a decoder block 1s shown at 2000 of FIG. 20.
A qubit register 2005 comprising a plurality of logical qubits
transmits syndrome data to a set of Gr-Gen modules. Groups
of Gr-Gen modules 2010 may share one or more DFS
Engines 2020 and groups of DFS Engines 2020 may share
one or more Corr Engines 2030. The hardware overhead
includes a first set of multiplexors 20335 coupling groups of
Gr-Gen modules 2010 to one DFS Engine 2020, and a
second set of multiplexors 2040 coupling groups of DES
Engines 2020 to one Corr Engine 2030. Memory requests
generated by the Corr Engines 2030 may be routed to the
correct memory locations using a demultiplexor 2045. The
select logic 2050 may prioritize the first ready component
and may use round robin arbitration to generate appropriate
select signals for multiplexors 2035 and 2040. For example,
if four Gr-Gen modules 2010 share a DFS Engine 2020, and
the 2nd Gr-Gen module finishes cluster formation earlier
than other modules, 1t may get access to the corresponding
DFS Engine 2020 first. The round robin policy thus ensures
fairness while sharing resources.

An example system architecture 1s shown at 2100 of FIG.
21. A qubit register 2105 comprises a plurality of logical
qubits 2110 coupled to control logic 2115. Each logical qubait
1s coupled to a compression engine 2120, which, 1 turn 1s
cach coupled to decompression engine 2125. A block of N
logical qubits 2110 share a decoder block 2130, which
updates error log 2135 for each coupled logical qubit 2110.
As described with regard to FIG. 19, operating temperatures
may vary from the indicated temperatures of 4 K and 77 K.
If N logical qubits share a decoder block 2130, for a
quantum register 21035 with L logical qubits 2110, the total
number of decoder blocks 2130 required 1s L/N. An example
micro-architecture uses L Gr-Gen modules, (a) L DFS
Engines, and (b) L. Corr Engines. Resource savings depend
on parameters (a) and (b). The values of (a) and (b) may be
calculated to minimize the overall hardware cost. This may
be framed as an optimization problem subject to constraints.

One way to do decoding for large scale systems 1s to
allocate one decoder to each logical qubit. However, this
approach incurs a linear growth 1n terms of hardware and
therefore 1 power costs. As such, this design 1s not very
ellicient and 1s not inherently scalable. The designs herein

enable the reuse of specific design components 1n order to
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reduce the practical costs when the decoder block 1s scaled
for a large number of logical qubits.

Resources may be shared within the decoding unmits and/or
across entire decoding units. Considering the distribution of
decoding times, 1t i1s unlikely that several very lengthy
syndrome vectors need to be decoded simultaneously, so
resources may be shared.

This sharing 1s independent of the decoder or decoding
algorithm, including 1n cases where the decoding algorithm
has a runtime that 1s dependent on the syndrome, and so
some syndromes may be more diflicult or lengthier to
decode than others. For example, some machine learning
based decoders are not syndrome dependent. A machine
learning decoder may have multiple layers of neural net-
works. Once decoding 1s performed for one qubit on the first
layer, the second qubit can use the first layer while the first
qubit 1s working on the second layer of the network.

FIG. 22 shows an example method 2200 for a quantum
computing device. Method 2200 may be executed by a
multiplexed quantum computing device, such as the com-
puting devices shown 1n FIGS. 20 and 21. At 2203, method
2200 includes generating syndromes from at least one
quantum register mncluding 1 logical qubits, where 1 1s a
positive mteger. The generated syndromes may include X
syndromes and 7 syndromes. At 2210, method 2200
includes routing the generated syndromes to a set of d
decoder blocks coupled to the at least one quantum register,
where d<2*1. As described with regard to FIGS. 20 and 21,
this allows for scalability of the quantum computing device,
as fewer than two decoders are needed to handle processing
on both the X and Z syndromes for each logical qubit.

In some examples, each decoder block 1s configured to
receive decoding requests from a set of n logical qubits,
wherein n>1. In some examples, each decoder block com-
prises gGr-Gen modules, where 0<g<(1, each Gr-Gen mod-
ule configured to generate spanning tree memory (STM)
data based on the received syndromes. In some examples,
cach decoder block further comprises a*1l DFS engines,
where O<o<1. In some examples, two or more Gr-Gen
modules are coupled to each DFS engine via one of a first
set of multiplexers

Optionally, at 2215, method 2200 i1ncludes, at each DFS
engine, accessing, via one of a first set of multiplexers, STM
data generated by two or more Gr-Gen modules. Optionally,
at 2220, method 2200 includes, at each DFS engine, gen-
crating edge stacks based on the STM data. In some
examples, each decoder block further comprises B*1 Corr
engines, where 0<[3<1. In some examples, two or more DFS
engines are coupled to each Corr engine via one of a second
set of multiplexers.

Optionally, at 2225, method 2200 includes, at each Corr
engine, accessing, via one of a second set of multiplexers,
edge stacks generated by two or more DFS engines. Option-
ally, at 2230, method 2200 includes, generating memory
requests based on the accessed edge stacks. Optionally, at
2235, method 2200 includes, routing memory requests gen-
erated by each Corr engine to memory locations via one or
more demultiplexers. Optionally, at 2240, method 2200
includes routing return signals through each multiplexer of
the first and second sets of multiplexers based on round-
robin arbitration.

Error correction 1s successiul when d rounds of syndrome
measurements are decoded within a logical cycle (1), which
limits the maximum latency that can be tolerated by the
decoders. When a decoder fails to decode all the syndromes
within a logical cycle, errors may go undetected. This type
of failure may be referred to as timeout failure. Since
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decoders are imperfect and exhibit threshold behavior, there
also exists a possibility of occurrence of logical error when
the correction generated by the decoder changes the logical
state of a qubit. Thus, the failure of a decoder may be
attributed to either timeout failure or a logical error. To keep
the error thresholds the same and prevent an increase of the
system failure rate, the probability of a timeout failure (p,, /)
must be lower than the probability of occurrence of a logical
error (p,,.) as shown in Equation (4). For the optimized
design, resource sharing is possible as long as p,, - 1s suffi-
ciently small.

(Eq. 4)

Assume N logical qubits with 1dentical error rates sharing
k decoding umits. The total execution time to decode N
logical qubits (r) 1s given by Equation (5):

ptﬂj‘i:pfog

1 Eqg. 5
T=EE£1T5 (Fq. )

where (T;) denotes the execution time of decoding the
syndromes of the i logical qubit. In this case, the probabil-
ity of a timeout failure p, - must satisfy Equation (6).

P, =P (x=1) (Eq. 6)

The optimization goal 1s to minimize the number of
decoding units k for a given number of logical qubits N such
that the constraint given by Equation (4) 1s met. The p,,-may
be modeled using the execution time obtained from a
simulator.

The decoder performance may be modeled by studying
the number of reads. The write operations performed may be
read-modify-write, and the writeback may not be on the
critical path. 4 cycles latency were assumed for memory
accesses and a 4 GHz clock frequency. The total number of
memory requests 1n the Gr-Gen for a given syndrome 1s
directly proportional to the cluster diameter (D1). Whereas,
it 1s proportional to the size of the cluster (S1) 1n the DFS
Engine and Corr Engine. The execution time spent in the
Gr-Gen(TGG), DFS Engine (TDES), and Corr Engine
(TCE) for a syndrome with n clusters are given by Equations
(7) and (8).

T )

~n—I1

(Eq. 7)

T prs=Tcr=2:S; (Eq. 8)

In the optimized design, each Gr-Gen unit grows clusters
for both X and Z syndromes. Two or more Gr-Gen units use
one DFS Engine module and two or more DFS Engines use
one Corr Engine. These number of units to be shared may be
determined by the fraction of the total execution time spent
in each pipeline stage.

Below, the simulation infrastructure used to make design
choices 1n the decoder microarchitecture 1s discussed. This
infrastructure enables the estimation of some of the key
statistics of the Union-Find decoder and further enables the
study of the performance of the compression techniques
described herein.

A Monte Carlo simulator was used to analyze the perfor-
mance of different compression techniques and obtain sta-
tistics of the performance of the Union-Find decoder. FIG.
23 schematically shows a Monte Carlo simulator 2300.
Different configurations spanning four different physical
error rates, ten different code distances, and four noise
models were each simulated for a million trials. The error
rates chosen were 107° (most optimistic), 107", 10—, and
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10~ (most pessimistic). Simulator 2300 accepted a code
distance 2302, noise model 2304, and compression algo-

rithm 2306. Based on the code distance 2302, the simulator
2300 generated a surface code lattice via lattice generator
2308. Depending upon the selected noise model 2304, the
simulator 1njected errors via error injection 2310 on the data
qubits of the surface code lattice and generated the output
syndrome 2312. The output syndrome 2312 was then com-
pressed via compressor 2314 1n accordance with the input
compression algorithm 2306 to generate compressed syn-
drome 2316. Simulator 2300 then output a compression
ratio. As a figure-of-merit to determine the most suitable
compression scheme, compression ratio (determined by
Equation (9)) and percentage of incompressible syndromes
were used. The simulation was repeated a million times to
compute the average compression ratio and percentage of
incompressible syndromes.

Compressed Syndrome Length
Actual Syndrome Length

(Eq. 9)

Compression Ratio =

The simulator also ran the Union-Find decoding algo-
rithm on syndrome 2312 via decoder 2318. Statistics gen-
erator 2320 then analyzed the distribution of cluster sizes,
average number of clusters on a given lattice, and execution
fime spent in each pipeline stage of decoder 2318 by
modeling the hardware. These statistics and performance
numbers provided insights that contributed to the design of
the micro-architecture of the hardware implementation of
the decoder and motivated the scalable design.

The performance of a decoder depends heavily on the
noise model of the underlying qubits. Thus, four different
error models were explored. Identical and 1ndependently
distributed (11d) errors were assumed, and the depolarizing
noise model was chosen as the most basic noise model. In
the depolarizing noise model, if the error rate 1s p, each
physical qubit encounters an error with probability p and
remains error free with probability (1—p). Additionally, 1n
this error model, X, Y, and Z errors each occur with equal
probabilities p/3. The other three noise models assume

different probabilities of X and Z errors as shown 1n Table
2.

TABLE 2

Error Probabilities

Model X Error (P,) Z Error (P)) Y Error (P,)
Depolarizing p/3 p/3 p/3

P. =P, p/2 p/2 0

P, = 10P, p/11 10p/11 0

P, = 100P, p/101 100p/101 0

Results for syndrome compression, the baseline Union-
Find decoder design and scalability analysis are discussed
herein. Results for the baseline decoder and scalability
analysis are based on d (code distance) rounds of syndrome
measurements as described herein.

Performance of each compression scheme depends on the
noise model. For the depolarizing noise model, compression
schemes like DZC and Geo-Comp offer better performance
as compared to sparse representation for low code distances
depending upon the error rate. DZC works better than
Geo-Comp for noise models which have a relative bias for
a specific type of error such as P =10P, and P,=100P,. For
lower code distances, even though sparse representation
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offers a higher compression ratio, the percentage of incom-
pressible syndromes 1s higher (up to 6%) for large error
rates. For noise models where probability of one type of
error 1s much larger than the other type, better compression
rat1o 1s obtained by compressing X and Z syndromes sepa-
rately at the expense of greater hardware complexity. IT only
one type ol compression must be used owing to hardware
restrictions, for lower code distances, DZC performs better.
Table 3 specifies the different noise regimes and the appro-
priate compression scheme that works best 1n each regime.
Overall, for most cases 1n the regime of low error rates,
sparse representation performs better.

TABLE 3
Compression Scheme

Model Error Rate DZ.C Sparse  Geo-Comp
Depolarizing 107 — d=7 d=3,5

1074, 1073, 1072 =3 d=7 d=>3
P =P, 107>, 1074, 1073, 1072 — d=5 d=3
P_=10P, 107>, 107 d=3 d=5 —

1072, 1072 d=3, d=z7 —

5

P_=100P, 102,104 103,102 d=3 d=5 —

FIG. 24 shows a plot 2400 indicating the mean compres-
sion ratio of the X syndromes for the depolarizing noise
channel using a selected compression scheme for different
physical error rates and noise regimes. The depolarizing
noise channel 1s shown as a representative candidate. Simi-
lar results were observed for the Z syndromes.

The distribution of the diameter of clusters from the
simulations was determined. As defined herein, cluster
diameter 1s the maximum distance between any two bound-
ary vertices ol a cluster. FIG. 25 shows a plot 2500 indi-
cating an average cluster diameter for diflerent error rates
and code distance for a logical qubit. The average cluster
diameter 1s low. This result 1s used to eliminate the storage
costs incurred 1in maintaining the boundary list for each
cluster in hardware, a feature that 1s used in the original
Union-Find algorithm. This reduces the hardware cost of the
Gr-Gen modules. The probability that a clusters diameter
will be small increases with decreasing error rates.

The spanning tree memory (STM) used by the Gr-Gen
modules and DFS engines accounts for most of the storage
costs. FIG. 26 shows a plot 2600 indicating total memory
capacity required for the Spanning Tree Memory (STM) for
a given code distance (d) and number of logical qubits (N).
The results shown here are for 3D graphs constructed using
d rounds of measurements. Plot 2600 shows that even for a
large number of logical qubits such as 1000, the total
memory required to decode both X and Z syndromes 1s less
than 10 MBs for very large code distances (d) and d rounds
of measurements. If the decoder does not need to account for
d rounds of measurements (assuming perfect measurements
are possible 1n future), the total memory capacity required 1s
reduced by a factor of d.

The maximum number of entries possible for the root and
s1ze tables 1s the total number of syndrome bits (equals to
2d(d-1)) for d (code distance) rounds of syndrome mea-
surements. Each root table entry includes a root which can
be uniquely identified using log,2d*(d-1) bits. Similarly, the
largest size of a cluster feasible includes all the syndrome
bits. Thus, the total size of the root and size table 1is
2d*(d-1)log,2 d*(d-1) bits for each logical qubit.

The s1ze of the stacks may be determined by analyzing the
maximum number of edges within a cluster from the Monte
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Carlo simulations. The number of edges 1n a cluster follows
Poisson distribution. FIG. 27 shows an example plot 2700
indicating such a distribution for code distance d=11 and
physical error rate p=10"". The stack size may thus be
designed to be half the maximum number of edges. FIG. 28
1s a plot 2800 showing an average number of edges in a
cluster for different code distances and error rates. Each
stack stores two vertices (log,4d*(d-1)bits), direction of
growth (2 bits), and 1 bit of syndrome. It 1s notable that each
DFS engine comprises 2 stacks for pipelining. If the size of
a cluster 1s larger than what each stack can hold, an overtlow
bit may be set and the alternate stack may be used when
available.

FIG. 29 shows a plot 2900 indicating the correlation
between the execution times 1n the Gr-Gen and DFS Engine.
This implies that during decoding, more time 1s spent 1n the
Gr-Gen unit. This data 1s used to select the number of
resources to be shared within a decoder block as described
herein. FIG. 30 shows a plot 3000 indicating the distribution
of execution time for a single decoder block (e.g., as shown
in FIG. 20) for a code distance (d) of 11 and error rate (p)
0.5%107°. The shaded region indicates events that may lead
to an increased probability of a timeout failure. With the
implemented sharing of resources, the probability of a
timeout failure p,,.1s lower than the probability of a logical
error rate is 107°. For L logical qubits, the number of Gr-Gen
modules, DFS Engines, and Corr Engines utilized are L,
.12, and LI2 respectively 1n thus architecture. Thus, the total
number of Gr-Gen modules, DFS Engines, and Corr Engines
are reduced by 2x, 4%, and 4x respectively.

Error correction 1s an integral part of the classical com-
putation associated with a quantum computer. Error decod-
ing algorithms are designed to attain higher error correction
capabilities (thresholds). Herein, a micro-architecture of a
hardware implementation of the Union-Find decoder 1s
disclosed using CMOS for operation at 77 K. Syndrome
compression 1s feasible 1n order to meet the bandwidth
requirements of the 4 K-77 K links. Different compression
schemes work differently under different noise regimes, with
sparse data representation usually working better for lower
error rates and larger code distances. The disclosed micro-
architecture 1s designed keeping 1n mind that decoders need
to scale up to a few thousand logical qubits. The architecture
comprises three pipeline stages and 1s tuned for high per-
formance and throughput and low hardware complexity. The
design may be scaled for a larger number of logical qubits
for practical fault-tolerant quantum computation. The time
spent 1 each pipeline stage 1s different and thus the utili-
zation ol each stage varies. By taking this mto account, an
architecture 1s disclosed that relies on resource sharing
across multiple logical qubits. Such resource sharing 1is
enabled such that the logical error rate 1s unafiected and the
system failure rate due to 1ts mability to decode errors owing
to lack of decoding resources 1s minimized.

In some embodiments, the methods and processes
described herein may be tied to a computing system of one
or more computing devices. In particular, such methods and
processes may be implemented as a computer-application
program or service, an application-programming interface
(API), a library, and/or other computer-program product.

FIG. 31 schematically shows a non-limiting embodiment
of a computing system 3100 that can enact one or more of
the methods and processes described above. Computing
system 3100 1s shown 1n simplified form. Computing system
3100 may embody the host computer device described
above and 1illustrated in FIG. 1. Computing system 3100
may take the form of one or more personal computers, server
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computers, tablet computers, home-entertainment comput-
ers, network computing devices, gaming devices, mobile
computing devices, mobile communication devices (e.g.,
smart phone), and/or other computing devices, and wearable
computing devices such as smart wristwatches and head
mounted augmented reality devices.

Computing system 3100 includes a logic processor 3102
volatile memory 3104, and a non-volatile storage device
3106. Computing system 3100 may optionally include a
display subsystem 3108, input subsystem 3110, communi-
cation subsystem 3112, and/or other components not shown
in FIG. 31.

Logic processor 3102 includes one or more physical
devices configured to execute instructions. For example, the
logic processor may be configured to execute instructions
that are part of one or more applications, programs, routines,
libraries, objects, components, data structures, or other logi-
cal constructs. Such nstructions may be implemented to
perform a task, implement a data type, transform the state of
one or more components, achieve a technical eflect, or
otherwise arrive at a desired result.

The logic processor may include one or more physical
processors (hardware) configured to execute software
instructions. Additionally or alternatively, the logic proces-
sor may include one or more hardware logic circuits or
firmware devices configured to execute hardware-imple-
mented logic or firmware instructions. Processors of the
logic processor 3102 may be single-core or multi-core, and
the 1nstructions executed thereon may be configured for
sequential, parallel, and/or distributed processing. Indi-
vidual components of the logic processor optionally may be
distributed among two or more separate devices, which may
be remotely located and/or configured for coordinated pro-
cessing. Aspects of the logic processor may be virtualized
and executed by remotely accessible, networked computing
devices configured 1 a cloud-computing configuration. In
such a case, these virtualized aspects are run on different
physical logic processors of various different machines, it
will be understood.

Non-volatile storage device 3106 includes one or more
physical devices configured to hold instructions executable
by the logic processors to implement the methods and
processes described herein. When such methods and pro-
cesses are implemented, the state of non-volatile storage
device 3106 may be transformed—e.g., to hold different
data.

Non-volatile storage device 3106 may include physical
devices that are removable and/or built-in. Non-volatile
storage device 3106 may include optical memory (e.g., CD,

DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor
memory (e.g., ROM, EPROM, EEPROM, FLASH memory,
etc.), and/or magnetic memory (e.g., hard-disk drive, tloppy-
disk drive, tape drive, MRAM, etc.), or other mass storage
device technology. Non-volatile storage device 3106 may
include nonvolatile, dynamic, static, read/write, read-only,
sequential-access, location-addressable, file-addressable,
and/or content-addressable devices. It will be appreciated
that non-volatile storage device 3106 1s configured to hold
istructions even when power 1s cut to the non-volatile
storage device 3106.

Volatile memory 3104 may include physical devices that
include random access memory. Volatile memory 3104 1s
typically utilized by logic processor 3102 to temporarily
store information during processing of software instructions.
It will be appreciated that volatile memory 3104 typically
does not continue to store 1structions when power 1s cut to
the volatile memory 3104.
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Aspects of logic processor 3102, volatile memory 3104,
and non-volatile storage device 3106 may be integrated
together mto one or more hardware-logic components. Such
hardware-logic components may include field-program-
mable gate arrays (FPGAs), program- and application-spe-
cific integrated circuits (PASIC/ASICs), program- and appli-
cation-specific standard products (PSSP/ASSPs), system-
on-a-chip (SOC), and complex programmable logic devices
(CPLDs), for example.

When included, display subsystem 3108 may be used to
present a visual representation of data held by non-volatile
storage device 3106. The visual representation may take the
form of a graphical user interface (GUI). As the herein
described methods and processes change the data held by the
non-volatile storage device, and thus transform the state of
the non-volatile storage device, the state of display subsys-
tem 3108 may likewise be transformed to visually represent
changes 1 the underlying data. Display subsystem 3108
may include one or more display devices utilizing virtually
any type of technology. Such display devices may be com-
bined with logic processor 3102, volatile memory 3104,
and/or non-volatile storage device 3106 1n a shared enclo-
sure, or such display devices may be peripheral display
devices.

When 1included, mput subsystem 3110 may comprise or
interface with one or more user-input devices such as a
keyboard, mouse, touch screen, or game controller. In some
embodiments, the mput subsystem may comprise or inter-
face with selected natural user mput (NUI) componentry.
Such componentry may be integrated or peripheral, and the
transduction and/or processing of input actions may be
handled on- or off-board. Example NUI componentry may
include a microphone for speech and/or voice recognition;
an 1nfrared, color, stereoscopic, and/or depth camera for
machine vision and/or gesture recognition; a head tracker,
eye tracker, accelerometer, and/or gyroscope for motion
detection and/or intent recognition; as well as electric-field
sensing componentry for assessing brain activity; and/or any
other suitable sensor.

When included, communication subsystem 3112 may be
configured to communicatively couple various computing
devices described herein with each other, and with other
devices. Communication subsystem 3112 may include wired
and/or wireless communication devices compatible with one
or more different communication protocols. As non-limiting
examples, the communication subsystem may be configured
for commumnication via a wireless telephone network, or a
wired or wireless local- or wide-area network, such as a
HDMI over Wi-F1 connection. In some embodiments, the
communication subsystem may allow computing system
3100 to send and/or receive messages to and/or from other
devices via a network such as the Internet.

In one example, a quantum computing device, comprises
a surface code lattice including 1 logical qubits, where 1 1s
a positive integer, the surface code lattice partitioned into
two or more regions based on lattice geometry; a compres-
sion engine coupled to each logical qubit of the 1 logical
qubits, each compression engine configured to compress
syndrome data generated by the surface code lattice using a
geometry-based compression scheme; and a decompression
engine coupled to each compression engine, each decom-
pression engine configured to receive compressed syndrome
data; decompress the recerved compressed syndrome data;
and route the decompressed syndrome data to a decoder
block. In such an example, or any other example, a total
number of decoder blocks 1s additionally or alternatively<l.
In any of the preceding examples, or any other example, at
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least one decoder block 1s additionally or alternatively
comprised in a hardware implementation of a Union-Find
decoder. In any of the preceding examples, or any other
example, the two or more regions additionally or alterna-
tively include regions that are not equal 1n size. In any of the
preceding examples, or any other example, the number of
regions 1s additionally or alternatively determined based on
an expected number of data blocks that contain trivial
syndromes comprising all-zero values. In any of the preced-
ing examples, or any other example, a number of qubits 1n
a region additionally or alternatively does not increase with
an increasing error rate. In any of the preceding examples,
or any other example, the geometry-based compression
scheme additionally or alternatively compresses regions of
X syndromes and regions of Z syndromes together. In any of
the preceding examples, or any other example, the compres-
sion engine additionally or alternatively compresses syn-
drome data using a zero indicator bit for each region of the
two or more regions of the surface code lattice, such that the
compressed syndrome data comprises syndrome data only
from non-zero regions. In any of the preceding examples, or
any other example, one or more of the data qubits are
additionally or alternatively positioned on a region bound-
ary, such that associated syndrome bits lie in adjacent
regions. In any of the preceding examples, or any other
example, the decompression engine 1s additionally or alter-
natively programmed based on the geometry-based com-
pression scheme used by the compression engine.

In another example, a method for a quantum computing,
device comprises generating syndrome data from at least
one surface code lattice including 1 logical qubits, where 1 1s
a positive iteger, each logical qubit coupled to one or more
X syndromes and one or more 7Z syndromes, the surface
code lattice partitioned 1nto two or more regions based on
lattice geometry; routing the generated syndrome data to a
compression engine that compresses the syndrome data
using a geometry-based compression scheme that com-
presses regions of X syndromes and regions of Z syndromes
together; transmitting the compressed syndrome data to a
decompression engine that decompresses the compressed
syndrome data using the geometry-based compression
scheme; and routing the decompressed syndrome data to a
decoder block. In such an example, or any other example,
compressing syndrome data using geometry-based compres-
sion additionally or alternatively includes compressing syn-
drome data using a zero indicator bit for each region of the
two or more regions of the surface code lattice. In any of the
preceding examples, or any other example, the compressed
syndrome data additionally or alternatively comprises syn-
drome data only from non-zero regions. In any of the
preceding examples, or any other example, one or more of
the data qubaits are additionally or alternatively positioned on
a region boundary, such that associated syndrome bits lie 1n
adjacent regions. In any of the preceding examples, or any
other example, two or more decompression engines addi-
tionally or alternatively transmit compressed syndrome data
to a common decoder engine. In any of the preceding
examples, or any other example, routing the decompressed
syndrome data additionally or alternatively includes routing
to a decoder block comprised 1n a hardware implementation
of a Union-Find decoder.

In yet another example, a method for a quantum comput-
ing device, comprises partitioning a surface code lattice into
two or more regions based on lattice geometry, the surface
code lattice including 1 logical qubits, where 1 1s a positive
integer; generating syndrome data from the surface code
lattice; routing the generated syndrome data to a compres-
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sion engine trained to compress syndrome data using a
geometry-based compression scheme; the compression
engine operating at a higher temperature than the surface
code lattice; and transmitting the compressed syndrome data
to a decompression engine operating at a higher temperature
than the compression engine. In such an example, or any
other example, each logical qubit of the surface code lattice
1s additionally or alternatively coupled to one or more X
syndromes and one or more 7 syndromes, and wherein the
compression engine compresses regions ol X syndromes and
regions ol Z syndromes together into the compressed syn-
drome data. In any of the preceding examples, or any other
example, partitioning the surface code lattice into two or
more regions 1s additionally or alternatively based on an
expected number of data blocks that contain trivial syn-
dromes comprising all-zero values. In any of the preceding
examples, or any other example, partitioning the surface
code lattice mnto two or more regions additionally or alter-
natively generates two or more regions that are not equal 1n
S1ZE.

It will be understood that the configurations and/or
approaches described herein are exemplary in nature, and
that these specific embodiments or examples are not to be
considered 1n a limiting sense, because numerous variations
are possible. The specific routines or methods described
herein may represent one or more of any number of pro-
cessing strategies. As such, various acts illustrated and/or
described may be performed in the sequence illustrated
and/or described, 1n other sequences, 1n parallel, or omatted.
Likewise, the order of the above-described processes may be
changed.

The subject matter of the present disclosure includes all
novel and non-obvious combinations and sub-combinations
of the various processes, systems and configurations, and
other features, functions, acts, and/or properties disclosed
herein, as well as any and all equivalents thereof.

The mvention claimed 1s:

1. A quantum computing device, comprising:

a surface code lattice including/logical qubits, where/1s a
positive integer, the surface code lattice partitioned nto
two or more regions based on lattice geometry;

a compression engine coupled to each logical qubit of
the/logical qubits, each compression engine configured
to compress syndrome data generated by the surface
code lattice using a geometry-based compression
scheme; and

a decompression engine coupled to each compression
engine, each decompression engine configured to:

recerve compressed syndrome data;

decompress the recerved compressed syndrome data; and

route the decompressed syndrome data to a decoder
block.

2. The quantum computing device of claim 1, wherein a

total number of decoder blocks 1s <.

3. The quantum computing device of claim 1, wherein at
least one decoder block 1s comprised 1n a hardware 1mple-
mentation of a Umion-Find decoder.

4. The quantum computing device of claim 1, wherein the
two or more regions include regions that are not equal in
S1ZE.

5. The quantum computing device of claim 4, wherein the
number of regions 1s determined based on an expected
number of data blocks that contain trivial syndromes com-
prising all-zero values.

6. The quantum computing device of claim 1, wherein a
number of qubits 1mn a region does not increase with an
Increasing error rate.
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7. The quantum computing device of claim 1, wherein the
geometry-based compression scheme compresses regions of
X syndromes and regions of 7Z syndromes together.

8. The quantum computing device of claim 7, wherein the
compression engine compresses syndrome data using a zero
indicator bit for each region of the two or more regions of
the surface code lattice, such that the compressed syndrome
data comprises syndrome data only from non-zero regions.

9. The quantum computing device of claim 8, wherein one
or more of the data qubits are positioned on a region
boundary, such that associated syndrome bits lie 1n adjacent
regions.

10. The quantum computing device of claim 7, wherein
the decompression engine 1s programmed based on the
geometry-based compression scheme used by the compres-
s10n engine.

11. A method for a quantum computing device, compris-
ng:

generating syndrome data from at least one surface code

lattice including 1 logical qubits, where 1 1s a positive
integer, each logical qubit coupled to one or more X
syndromes and one or more 7 syndromes, the surface
code lattice partitioned 1nto two or more regions based
on lattice geometry;

routing the generated syndrome data to a compression

engine that compresses the syndrome data using a
geometry-based compression scheme that compresses
regions of X syndromes and regions of 7Z syndromes
together:;

transmitting the compressed syndrome data to a decom-

pression engine that decompresses the compressed syn-
drome data using the geometry-based compression
scheme; and

routing the decompressed syndrome data to a decoder

block.

12. The method of claim 11, wherein compressing syn-
drome data using geometry-based compression includes
compressing syndrome data using a zero indicator bit for
cach region of the two or more regions of the surface code
lattice.

13. The method of claim 12, wherein the compressed
syndrome data comprises syndrome data only from non-zero
regions.
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14. The method of claim 12, wherein one or more of the
data qubits are positioned on a region boundary, such that
associated syndrome bits lie 1n adjacent regions.

15. The method of claim 11, where two or more decom-
pression engines transmit compressed syndrome data to a
common decoder engine.

16. The method of claim 11, wherein routing the decom-
pressed syndrome data includes routing to a decoder block
comprised in a hardware implementation of a Union-Find
decoder.

17. A method for a quantum computing device, compris-
ng:

partitioning a surface code lattice into two or more

regions based on lattice geometry, the surface code
lattice 1including 1 logical qubits, where 1 1s a positive
integer;

generating syndrome data from the surface code lattice;

routing the generated syndrome data to a compression

engine trained to compress syndrome data using a
geometry-based compression scheme; the compression
engine operating at a higher temperature than the
surface code lattice;

transmitting the compressed syndrome data to a decom-

pression engine operating at a higher temperature than
the compression engine;

at the decompression engine, decompressing the trans-

mitted compressed syndrome data; and

routing the decompressed syndrome data to a decoder

block.

18. The method of claim 17, wherein each logical qubit of
the surface code lattice 1s coupled to one or more X
syndromes and one or more 7 syndromes, and wherein the
compression engine compresses regions of X syndromes and
regions of Z syndromes together into the compressed syn-
drome data.

19. The method of claim 17, wherein partitioning the
surface code lattice into two or more regions 1s further based
on an expected number of data blocks that contain trivial
syndromes comprising all-zero values.

20. The method of claim 17, wherein partitioning the
surface code lattice into two or more regions generates two
or more regions that are not equal 1n size.
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