a2 United States Patent
Babbush et al.

USO011763187B2

US 11,763,187 B2
Sep. 19, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

TRAINING QUANTUM EVOLUTIONS USING
SUBLOGICAL CONTROLS

Applicant: Google LLC, Mountain View, CA (US)

Inventors: Ryan Babbush, Venice, CA (US);
Hartmut Neven, Malibu, CA (US)

Assignee: Google LLC, Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 18/147,144

Filed: Dec. 28, 2022

Prior Publication Data

US 2023/0134825 Al May 4, 2023

Related U.S. Application Data

Continuation of application No. 17/339,123, filed on

Jun. 4, 2021, now Pat. No. 11,562,285, which 1s a
continuation of application No. 16/355,293, filed on
Mar. 15, 2019, now Pat. No. 11,055,626, which 1s a

(Continued)

Int. CI.

GO6N 10/00 (2022.01)

GO6N 20/00 (2019.01)

GO6F 15/16 (2006.01)

B82Y 10/00 (2011.01)

U.S. CL

CPC ............ GO6N 10700 (2019.01); GO6F 15/16

(2013.01); GO6N 20/00 (2019.01); B82Y 10/00
(2013.01)

Field of Classification Search
None
See application file for complete search history.

A

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0060710 Al 3/2011 Amin
2012/0319085 Al 12/2012 Gambetta et al.
2015/0032994 Al 1/2015 Chudak et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 203872190 10/2014
CN 104572589 4/2015
(Continued)

OTHER PUBLICATTIONS

Babbush et al., “Construction of non-convex polynomuial loss func-
tions for training a binary classifier with quantum annealing,” arXiv,

Jun. 2014, 15 pages.
(Continued)

Primary Examiner — Whitney Moore
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Methods, systems, and apparatus for traiming quantum evo-
lutions using sub-logical controls. In one aspect, a method
includes the actions of accessing quantum hardware,
wherein the quantum hardware includes a quantum system
comprising one or more multi-level quantum subsystems;
one or more control devices that operate on the one or more
multi-level quantum subsystems according to one or more
respective control parameters that relate to a parameter of a
physical environment in which the multi-level quantum
subsystems are located; initializing the quantum system 1n
an 1mtial quantum state, wherein an mnitial set of control
parameters form a parameterization that defines the initial
quantum state; obtaining one or more quantum system
observables and one or more target quantum states; and
iteratively training until an occurrence of a completion
event.

20 Claims, 3 Drawing Sheets

Target quantum

state 770

Quanium hardware 102

< Ansatz 116
F
Parameters
Quantum 118
system 112 -
p » {:_Dntrui
devices 174

Updated
FParameters 120

A ——

Classical

processors 104
Mesasurement

resuit 108

Quanium evolution training system 700

Observables, {arget
characterisiics 106



US 11,763,187 B2
Page 2

Related U.S. Application Data

continuation of application No. 15/171,778, filed on
Jun. 2, 2016, now Pat. No. 10,275,717.

(56) References Cited
U.S. PATENT DOCUMENTS

2016/0071021 Al
2019/0266510 Al
2020/0005186 Al

3/2016 Raymond
8/2019 Yarkoni et al.
1/2020 Romero et al.

FOREIGN PATENT DOCUMENTS

CN 105531725 4/2016
JP 2013-114366 6/2013
WO WO 2013006836 1/2013

OTHER PUBLICATIONS

Behrman et al. “Quantum algorithm design learning using dynamic
learning,” arXiv, Aug. 11, 2008, 18 pages.

CA Oflice Action 1n Canadian Appln. No. 3,026,443, dated Sep. 9,
2020, 3 pages.

CA Oflice Action 1n Canadian Appln. No. 3026443, dated Oct. 10,
2019, 5 pages.

Caneva et al., “Chopped random-basis quantum optimization,”
Physical Review A 84, 022326, Aug. 2011, 10 pages.

Extended European Search Report in European Appln. No. 21213547.
9, dated Apr. 25, 2022, 13 pages.

International Preliminary Report on Patentability 1n International
Appln. No. PCT/uS2016/067471, dated Sep. 5, 2018, 18 pages.
International Search Report and Written Opinion in International
Appln. No. PCT/US2016/067471, dated Mar. 29, 2017, 16 pages.

International Written Opinion 1n International Appln. No. PCT/
US2016/067471, dated Apr. 30, 2018, 7 pages.

Leghtas et al., “Confining the state of light to a quantum manifold

by engineered two-photon loss,” Science, Feb. 20, 2015, 347(6224):853-
857.

McClean et al., “Exploiting Locality in Quantum Computation for
Quantum Chemustry,” The Journal of Physical Chemistry Letters,
Nov. 2014: 5(24):4368-4380.

McClean et al., “The theory of variational hybrid quantum-classical
algorithms,” arXiv, Sep. 14, 2015, 20 pages.

Notice of Reasons for Rejection in Japanese Appln. No. 2018-
562952, dated Jan. 23, 2020, 8 pages (with English translation) .
O’Malley et al., “Scalable quantum simulation of molecular ener-
gies,” Physical Review X, Jul. 2016, 6(3):1-12.

Oflice Action 1in Australian Appln. No. 2019283 845, dated Sep. 2,
2020, 5 pages.

Office Action 1n Australian Appln. No. 2021203 607, dated May 23,
2022, 2 pages.

Oflice Action 1n Chinese Appln. No. 201680087746.8, dated Jul. 5,
2021, 12 pages (with English translation).

Oflice Action 1n European Appln. No. 16825955, dated Apr. 2, 2020,
7 pages.

Office Action 1n European Appln. No. 16825955, dated Feb. 4,
2020, 7 pages.

Office Action 1n European Appln. No. 16825955 .4, dated Jun. 8,
2021, 8 pages.

Office Action 1n European Appln. No. 16825955 4, dated Nov. 24,
2020, 8 pages.

Peruzzo et al., “A variational eigenvalue solver on a photonic
quantum processor,” Nature Communications 5:4213, Jul. 2014,
1-7.

Shen et al., “Quantum Implementation of Unitary Coupled Cluster
for Simulating Molecular Electronic Structure,” arXiv, Jun. 2015,
1-24.

Wecker et al., “Towards Practical Quantum Variational Algo-
rithms,” Physical Review A 92, 042303, Sep. 2015, 11 pages.
Wiebe et al., “Quantum Deep Learning,” arXiv: 1412.3489, Dec.
2014, 34 pages.

Yung et al., “From transistor to trapped-ion computers for quantum
chemistry,” Scientific Reports 4:3589, Jan. 2014, 1-7.




US 11,763,187 B2

Sheet 1 of 3

Sep. 19, 2023

U.S. Patent

R e e e

00}

L Ol

90} solisleloeleyo
Jobue) ‘se|qeatssqQ

walsAs Duiuiel] uolinjoAs wnuenp)

201 nsa.
JUsWaJINSEaN

£0 L SJ0SS820.d

|IEJISSE|D

Oc L Sioloulele d
pelepdn

Ol ®jels
wniuenb jeble |

8lL

sigjolleled

gl [ Zlesuy

\ 4

ZO[ @Jempley wnjuenp

71 [ SOOIASD

|0JJU0)

71 [ WalsAs
wnuen)




U.S. Patent Sep. 19, 2023 Sheet 2 of 3 US 11,763,187 B2

2002k

Access quantum hardware

Initialize quantum system In Initial state
204

Obtain observables and target quantum

states
06

Iteratively train until occurrence of

completion event
208

Provide target state for experimental
probing

10

FIG. 2



U.S. Patent Sep. 19, 2023 Sheet 3 of 3 US 11,763,187 B2

3001

Determine value of cost function

Minimize value of cost function to determine
updated control parameter values
304

Determine whether completion event has

occurred

06

FIG. 3



US 11,763,187 B2

1

TRAINING QUANTUM EVOLUTIONS USING
SUBLOGICAL CONTROLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation application of, and
claims priority to, U.S. patent application Ser. No. 17/339,
125, titled “TRAINING QUANTUM EVOLUTIONS
USING SUBLOGICAL CONTROLS,” filed on Jun. 4,
2021, which 1s a continuation application of, and claims
priority to, U.S. patent application Ser. No. 16/355,293, now

U.S. Pat. No. 11,055,626, titled “TRAINING QUANTUM
EVOLUTIONS USING SUBLOGICAL CONTROLS,”
filed on Mar. 15, 2019, which 1s a continuation application

of, and claims priority to, U.S. patent application Ser. No.
15/171,778, now U.S. Pat. No. 10,275,717, titled “TRAIN-

ING QUANTUM EVOLUTIONS USING SUBLOGICAL
CONTROLS,” filed on Jun. 2, 2016. The disclosures of the

foregoing applications are incorporated herein by reference
in their entirety for all purposes.

BACKGROUND

This specification relates to quantum computing.

Quantum variational eigensolvers have been proposed as
a method to prepare and study the states of physically
interesting systems. Digital implementations of quantum
variational eigensolvers use quantum logic gates that
execute precisely known operations on qubits.

SUMMARY

This specification describes technologies for training
quantum evolutions of an 1nitial quantum state to realize a
target quantum state with defined target characteristics. The
quantum evolutions of the mnitial quantum state are trained
using adjustable analogue evolutions defined through the
tuning of fundamental hardware elements, such as control
knobs that may typically be used to calibrate individual
quantum gates.

In general, one 1nnovative aspect of the subject matter
described 1n this specification can be implemented 1n a
method that includes accessing quantum hardware, wherein
the quantum hardware comprises a quantum system com-
prising one or more multi-level quantum subsystems; one or
more control devices that operate on the one or more
multi-level quantum subsystems according to one or more
respective control parameters that relate to a parameter of a
physical environment in which the multi-level quantum
subsystems are located; mitializing the quantum system 1n
an 1nitial quantum state, wherein an mitial set of control
parameters form a parameterization that defines the nitial
quantum state; obtaining one or more quantum system
observables and one or more target quantum states; and
iteratively training until an occurrence of a completion
event.

Other implementations of this aspect include correspond-
ing computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods. A system
of one or more computers can be configured to perform
particular operations or actions by virtue of having software,
firmware, hardware, or a combination thereof installed on
the system that in operation causes or cause the system to
perform the actions. One or more computer programs can be
configured to perform particular operations or actions by
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virtue of including instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
actions.

The foregoing and other implementations can each
optionally include one or more of the following features,
alone or in combination. In some i1mplementations itera-
tively training comprises iteratively training changes from
the mitial quantum state to achieve the one or more target
quantum states.

In further implementations iteratively training comprises
iteratively tramming, until the occurrence of a completion
event, evolutions of the initial quantum state and subsequent
quantum states to realize the one or more target quantum
states.

In some cases the evolutions are analog evolutions.

In some 1implementations iteratively training comprises,
for each iteration: determining a value of a cost function that
1s based on a current quantum state for the iteration and the
one or more of the quantum system observables; minimizing
the value of the cost function to determine updated values of
the control parameters that define the current quantum state;
and determining whether the completion event has occurred.

In other implementations minimizing the value of the cost
function to determine updated values of the control param-
eters comprises adjusting the control parameters.

In some cases the method further comprises, 1n response
to determining that the completion event has occurred,
providing the one or more target quantum states for experi-
mental probing.

In some implementations (1) at least one of the quantum
system observables comprises a Hamiltoman of the quantum
system, (11) the one or more target quantum states comprise
one or more eigenstates of the Hamiltoman, and (111) experi-
mental probing comprises measuring the energy of one or
more of the eigenstates to determine corresponding energy
cigenvalues of the eigenstates.

In other implementations (1) the system observable 1s a
molecular electronic structure Hamiltonian, (11) the one or
more target quantum states comprise a ground state of the
molecular electronic structure Hamiltonian, and (111) experi-
mental probing comprises measuring the target quantum
state to determine the ground state energy.

In some cases the value of the cost function that 1s based
on the quantum state and one or more of the system
observables 1s an expectation value of the quantum state and
one or more ol the system observables.

In other cases determining an expectation value of the
quantum state and one or more of the system observables
comprises: repeatedly initializing the quantum system 1n an
initial quantum state; for each initialized quantum state,
measuring the one or more system observables to determine
a set of measurement results; based on the set of measure-
ment results, determining an expectation value of the quan-
tum state and one or more of the system observables.

In some cases each mitialized quantum state 1s diflerent
from each other 1nitialized quantum state.

In some implementations determining an expectation
value of the quantum state and one or more of the system
observables comprises determining an expectation value of
a density operator and the one or more system observables.

In other implementations obtaining one or more target
quantum states comprises encoding a solution to an optimi-
zation problem into the ground state of the quantum system.

In some cases the method further comprises obtaining a
solution to the optimization problem from the experimental
probing.
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In some 1mplementations (1) the mnitial quantum state
encodes training data, (11) the one or more system observ-
ables serve as a prediction function, and (1) iteratively
training changes from the initial quantum state comprises
solving a machine learning problem.

In some cases the quantum hardware comprises a quan-
fum circuit.

In some cases the control devices include one or more
quantum gates that operate on the quantum system through
one or more respective control parameters.

In some implementations the method further comprises
calibrating one or more of the quantum gates, comprising,
for each quantum gate that 1s to be calibrated: defining a
correct action of the quantum gate on the quantum system;
performing a measurement to determine the action of the
quantum gate on the quantum system; and 1n response to
determining that the action of the quantum gate on the
quantum system 1s not correct, adjusting the corresponding
control parameters for the quantum gate.

In some cases iteratively training comprises combining
iterative training with calibrating one or more of the quan-
tum gates.

In other cases minimizing the value of the cost function to
determine updated values of the control parameters com-
prises performing a gradient-free greedy minimization
method.

In some 1implementations the completion event 1s that the
determined value of the cost function that 1s based on the
quantum state and one or more of the system observables
converges.

In some cases the 1mitial quantum state 1s a state of a
resonator that 1s coupled to a superconducting qubat.

The subject matter described 1n this specification can be
implemented 1n particular ways so as to realize one or more
of the following advantages.

A system training quantum evolutions using sublogical
controls parameterizes quantum evolution using the natural
control parameters of a quantum system by performing
variational mimmmization procedures by directly adjusting
control parameters of control devices included 1n the system,
e.g., by adjusting a voltage on a digital to analog converter.
By exploiting low level control to parameterize an ansatz, a
system training quantum evolutions using sublogical con-
trols 1s able to eschew precise knowledge of an effective
circuit 1n exchange for an overall mapping that 1s agnostic to
systematic errors and robust to many control and calibration
problems, as opposed to systems that train quantum evolu-
tions using adjustable quantum gates. Furthermore, using
low level controls may allow for a fundamentally more
accurate representation of a desired state, since an increase
in control over the evolution of the state 1s achieved. Using
hardware level controls provides the highest amount of
control over the evolution and state that 1s prepared, there-
fore, even 1n the presence of errors, a more precise ansatz 1s
created for the model that 1s being simulated.

A system training quantum evolutions using sublogical
controls adaptively trains quantum evolutions to realize
target quantum states with target characteristics without
using a parameterized digital quantum circuit, thus reducing
the experimental complexity of the system since such quan-
tum circuits may be very complicated to implement. Rather,
a system training quantum evolutions using sublogical con-
trols may abandon the concept of digital quantum gates 1n
favour of adjustable analog evolutions defined using control
parameters typically reserved for the calibration of indi-
vidual gates, unlike other quantum evolution training sys-
tems. By operating at the level of fundamental hardware
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elements, a system fraining quantum evolutions using sub-
logical controls does not require precise knowledge of an
effective circuit and rather performs an overall mapping that
1s agnostic to systematic errors and robust to many control
and calibration problems.

Digital quantum circuits may consist of quantum logic
gates that execute precise operations on qubits, or 1n some
examples qudits. In many settings quantum logic gate model
algorithms specify a quantum circut and require an experi-
mentalist to execute the specified quantum circuit with
minimal error. This may be a challenging task, since the
implementation of a quantum logic gate model algorithm
may require many quantum logic gates. Scalable computa-
tions based on the quantum logic gate model may therefore
require costly processes, such as quantum error correction.
Furthermore, each gate 1n the circuit must be calibrated prior
to execution. Systems that do not train quantum evolutions
using sublogical controls may calibrate quantum gates by
carefully adjusting hardware control parameters and per-
forming a classical minimization loop to perfect each 1ndi-
vidual gate. Thus, a great amount of effort may be required
1in order to apply a quantum circuit, which in any case will
not be error free. In fact, the system may be subject to a large
amount of errors, such as control errors where the error 1s
caused by pulses not perfectly forming the gate, as 1s often
the case, or errors resulting from noise coupling with the
system.

A system training quantum evolutions using sublogical
controls may be applicable 1n a variety of settings and used
to manipulate various types of controllable states, such as
those that live 1n resonators that are attached to supercon-
ducting qubits. Such resonator states are controllable and
define an appropriate variational ansatz.

A system training quantum evolutions using sublogical
controls may be used instead of or in conjunction with
standard methods for gate calibration in order to improve
system scalability and performance. Quantum gates may be
generated by precise evolutions of a quantum system under
particular Hamiltonians. For example, 1n the case of super-
conducting Gmon qubaits, the system may be described by
the Hamiltonian given by equation (1) below.

N

H = Zﬂf(f)}f}' + ibf(r)}} + i[jf(f)zf n Zgﬁ(f)X}Xj + ¥ Y;
| ' =1

=1 i=1 {U> 2

(1)

(1)

N N N
XX+ Y.Y,;
H = Eaf(r)ﬁf; ¥ lebf(r)n ¥ Zl]cf(r)zf ¥ ;gg(r) >
= = = i7

In equation (1), X, Y, Z. are Paul1 operators and a(t),
b,(1), c,(t) and g, (1) are time-dependent profiles generated by
microwave pulses that are sent through wires 1n the hard-
ware. In order to execute a quantum circuit an experimen-
talist may be required to first calibrate all the gquantum gates
included 1n the gquantum circuit by sending specific pulses
through the wires 1n the hardware. In the case of supercon-
ducting electronics, the pulses may be thought of as being
formed from a Fourier series—for example, a pulse which
induces a local Y field on a qubit ¢ may be given by
b g(t)zZKZIKAK sin(K®,tHB . cos k®,t where ®, 1s a funda-
mental frequency and A, B, determine the pulse shape. At
the hardware level, the pulses Y, and Y, may be engineered
using a digital to analog converter (DAC) which sets the
voltage versus time for each line.

It may be possible to determine precisely or approxi-
mately which pulses are needed 1n order to perform desired
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quantum gates, and then Fourier transform the determined
pulses and program the pulses mto appropriate DACs.
However, the exact mapping between settings of a DAC and
the actual pulses seen by the system on which the pulses act
1s not precise for real experimental systems 1n a laboratory.
For example, a DAC may be programmed a particular way
1in order to perform a particular tasks, however, in practice,
the physical action of the DAC may deviate from the
intended action, e.g., due to unknown persistent systematic
errors. For example, a DAC 1n a laboratory may be at room
temperature whereas a quantum chip may be at milikelvin
temperatures, leading to unpredictable or unwanted trans-
formations as the signal travels down to the chip due to a
changing temperature of the waveguide.

Unlike other systems, a system training quantum evolu-
tions using sublogical controls may not require protocols
from quantum control theory, such as a chopped random
basis scheme, 1n order to form clean quantum gates. Simi-
larly, unlike other systems which implement quantum con-
trol procedures to tune individual gates, as described above
a system training quantum evolutions using sublogical con-
trols may be used to calibrate or train an entire circuit. In
some 1mplementations, e.g., for systems with advanced
architectures, 1t may further be advantageous to combine the
training of quantum evolutions using sublogical controls
with the standard methods for gate calibration described
above.

Furthermore, a system training quantum evolutions using
sublogical controls may be more robust and avoid introduc-
ing certain control or systematic errors mto the quantum
system compared to systems that do not train quantum
evolutions using sublogical controls. For example, experi-
mentalists may typically form gates out of sublogical con-
trols using control theory feedback since the action of the
control parameters on the system may not be entirely known
or predictable. However, such control or systematic errors
are not problematic for a system training quantum evolu-
tions using sublogical controls since the classical minimi-
zation process used to determine a control parameter update
1s agnostic to exactly what 1s happening 1n the hardware—it
1s not problematic 1f it 1s assumed that the ansatz 1s param-
eterized 1n a certain way but 1t 1s actually parameterized
slhightly differently if the parameterization does not change.

In addition, a system training quantum evolutions using
sublogical controls 1s able to tolerate leakage away from
qubit states, which 1s most quantum computing settings 1s
extremely problematic. Defining a variational ansatz on a
qubit manifold but permitting the state or parts of the state
to leave the manifold 1s permissible, equivalent to perform-
Ing a non-unitary operation and renormalizing the state.

Unlike other quantum evolution training systems, a sys-
tem training quantum evolutions using sublogical controls
may be applied to multi-level quantum systems, e.g., multi-
level systems other than qubits, since any parameterized
quantum evolution of any quantum system may be used to
define an ansatz. Therefore, the practicality and applicability
of systems training quantum evolutions using sublogical
controls 1s greatly improved since quantum hardware often
suffers from qubit leakage, 1.e., qubits may only be approxi-
mately qubits and may at times occupy higher energy levels.
In addition, a system tramning quantum evolutions using
sublogical controls may be applied to train quantum evolu-
tions and realize quantum states with target characteristics
even 1n the presence of noise, 1.e., the system training
quantum evolutions using sublogical controls does not
require that the evolution 1s closed.
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Training quantum evolutions using sublogical controls
may be applied to a variety of settings, 1n particular settings
of mdustrial value. Generally, any physical system that 1s
hard to study due to quantum mechanics may benefit from
implementing a system for training quantum evolutions
using sublogical controls. For example, training quantum
evolutions using sublogical controls may be used to prepare
the ground states of the molecular electronic structure Ham-
1ltonian that describes the energetics of molecules—a com-
pelling industrial application of a small quantum computer.
Solving such problems on a quantum computer would
provide energy surfaces that describe chemical reactions and
may be used to predict chemical rates, thus dramatically
accelerating, for example, drug discovery, solar cell design
and industrial catalyst development. As another example,
training quantum evolutions using sublogical controls may
be used to study the properties of high temperature super-
conductors, e.g., by studying the Fermi-Hubbard model. As

a further example, training quantum evolutions using sub-
logical controls may be used to simulate models from
condensed matter physics, e.g., for the purpose of mmvesti-
gating and designing material properties.

The details of one or more implementations of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent

from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example quantum evolution training
system.

FIG. 2 1s a flow diagram of an example process for
training quantum evolutions using sublogical controls.

FIG. 3 1s a flow diagram of an example iteration for
training quantum evolutions of a quantum state.

Like reference numbers and designations 1n the various
drawings 1ndicate like elements.

DETAILED DESCRIPTION

This specification describes an apparatus and method for
adaptively training quantum evolutions to realize quantum
states with target characteristics using hardware level con-
trol. The apparatus and method have applications 1n a variety
of settings, including machine learning tasks and quantum
simulation e.g., the preparation and study of physically
interesting states.

For example, 1t may be required to prepare or solve for a
quantum state ly) of a quantum system which is a lowest
energy eigenstate of a Hamiltonian H so that Hiy) =E, ) .
One method for approximately preparing ) is to param-

. . — .
eterize a guess wavefunction 10( 0 )) , known as an ansatz, in

terms of a polynomial number of parameters denoted by the

%
vector 0. The quantum variational principle then holds that

(@)H19(8)
(0@ | ¢)

(60)H16(8)
(0@ | )
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1O(0)) 1Y) lP) 19(0)) O1p(0)) with equality when =.
Accordingly, may be approximated with by solving for
which makes the above mnequality as tight as possible within
the parameterization. This specification describes an appa-
ratus and method for parameterizing using a low level, 1.e.,
sublogical, control that 1s based on the natural control knobs
of the corresponding quantum system to parameterize an

ansatz.

6(8)) 1) 1p) 16(8)) 6 16(6))

Example Operating Environment

FIG. 1 depicts an example quantum evolution training
system 100. The example system 100 1s an example of a
system 1mplemented as classical or quantum computer pro-
grams on one or more classical computers or quantum
computing devices 1 one or more locations, 1n which the
systems, components, and techniques described below can
be implemented.

The quantum evolution training system 100 may include
quantum hardware 102 1n data communication with a clas-
sical processor 104. The quantum evolution training system
100 may receive as mput data that may include data speci-
fying one or more quantum system observables and one or
more target quantum states, for example quantum states with
corresponding target characteristics, e.g., observables and
target characteristics 106. The evolution training system 100
may generate as output data specifying one or more target
quantum states, e.g., target quantum state 110.

The one or more quantum system observables may
include measureable operators, e.g., a Hamiltonian operator,
momentum operator or position operator. The target quan-
tum states may include one or more eigenstates of a Ham-
iltonian operator, e.g., a ground state of a Hamiltonian
operator. In some 1mplementations a solution to an optimi-
zation problem may be encoded into the ground state of a
Hamiltonian operator. The data specilying target quantum
state 110 may be further provided for experimental probing
or post processing, ¢.g., the energy of the target quantum
state may be measured to determine a corresponding energy
cigenvalue.

The quantum hardware 102 may include a quantum
system 112, control devices 114 and data specilying an
ansatz 116. The quantum system 112 may include one or
more multi-level quantum subsystems, €.g., qubits or qudits.
In some implementations the multi-level quantum subsys-
tems may be superconducting qubits, e.g., Gmon qubits. The
type of multi-level quantum subsystems that the system 100
utilizes 1s dependent on the application 1n which the system
100 1s applied to. For example, 1n some cases 1t may be
convenient to include one or more resonators attached to one
or more superconducting qubits, e.g., Gmon or Xmon
qubits. In other cases 1on traps, photonic devices or super-
conducting cavities (with which states may be prepared
without requiring qubits) may be used. Further examples of
realizations of multi-level quantum subsystems include tlux-
mon qubits, silicon quantum dots or phosphorus 1mpurity
qubits.

The one or more control devices 114 may be configured
to operate on the multi-level quantum subsystems 112
through one or more respective control parameters 118, e.g.,
one or more physical control parameters. For example, 1n
some 1mplementations the multi-level quantum subsystems
may be superconducting qubits and the control devices 114
may 1nclude one or more digital to analog converter (DACs)
with respective voltage physical control parameters. In other
implementations the quantum system 112 may include a
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quantum circuit and the control devices 114 may include one
or more quantum logic gates that operate on the quantum
system 112 through microwave pulse physical control
parameters that are sent through wires included in the
quantum hardware 102. Further examples of control devices
include arbitrary wavelform generators, which may create
signals that a DAC controls. The control parameters may
include qubit frequencies.

The data specitying an ansatz 116 includes a set of
parameters 118 and i1s chosen based on knowledge of the
quantum system 112 and the control devices 114 that act on
the quantum system 112. For example, the ansatz 116 may
be a variational ansatz that uses information about the
quantum hardware 102, such as the control devices 114 and
theirr respective control parameters 118, to determine a
parameterization for the state of the quantum system 112. In
some 1mplementations the quantum hardware 102 1s directly
used to parameterize the ansatz 116 that 1s the variational
class of parameters that form the variational ansatz 116 may
include the sublogical, physical control parameters of the
control devices 114.

The quantum hardware 102 may be configured to perform
quantum measurements on the quantum system 112 and
send measurement results to the classical processors 104. In
addition, the quantum hardware 102 may be configured to
receive data specilying updated physical control parameter
values 120 from the classical processors 104. The quantum
hardware 102 may use the received updated values of
physical control parameter values 120 to update the action of
the control devices 114 on the quantum system 112, thus
training the evolution of the quantum state 112. For
example, the quantum hardware may receive data specitying
new values representing voltage strengths of one or more
DACs included 1n the control devices 114 and may update
the action of the DACs on the quantum system 112 accord-
ingly.

The classical processors 104 may be configured to 1ni-
tialize the quantum system 112 in an mitial quantum state,
¢.g., by sending data to the quantum hardware 102 specify-
ing an 1nitial set of parameters, and to 1teratively train analog
evolutions of the 1mitial quantum state and subsequent quan-
tum states to realize the target quantum state 100 with the
target characteristics 106. The classical processors may be
configured to iteratively train analog evolutions of the mitial
quantum state until the occurrence of a completion event,
¢.g., until received measurement results 108 converge. The
classical processors 104 may determine that a completion
event has occurred and provide the target quantum state 110
with defined target characteristics 106 for experimental
probing, as described above.

The classical processors 104 may further be configured to
determine a value of a cost function that 1s based on a
quantum state of the quantum system 112 and one or more
of the system observables 106 and to minimize the value of
the cost function to determine updated values of the physical
control parameters 120. For example, the classical proces-
sors may be configured to perform minimization methods
such as gradient-free minimization methods including Pow-
ell’s method or Nelder-Mead.

In some implementations the value of the cost function
that 1s based on the quantum state of the quantum system 112
and one or more of the system observables 106 1s an
expectation value of the quantum state and the system
observables. For example, the classical processors 104 may
be configured to repeatedly initialize the quantum system in
an 1nitial quantum state and for each imitialized quantum
state, 1nitiate measurements of one or more of the system
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observables to determine a set of measurement results, e.g.,
a set of measurement results 108. Based upon the set of
measurement results, the classical processors 104 may be
configured to determine a corresponding expectation value
of the quantum state and one or more of the system observ-
ables. In other examples the classical processors 104 may be
configured to determine an expectation value of a density
operator and the one or more system observables.

The classical processors 104 may be further configured to
calibrate one or more quantum gates that may be included 1n
the quantum hardware 102. For example, the classical
processors may be configured to define a correct action of a
quantum gate on the quantum system 112, perform or initiate
a measurement of the quantum system 112 to determine the
action of the quantum gate on the quantum system 112 and
in response to determining that the action of the quantum
gate on the quantum system 1s not correct, adjust the
corresponding physical control parameters for the quantum
gate and provide the adjusted updated physical control
parameters 120 to the quantum hardware 102. In some
implementations the classical processor may be configured
to 1teratively train analog evolutions of the a quantum state
to realize a target quantum state with target characteristics
by combining iterative training of analog evolutions of the
initial quantum state and subsequent quantum states with
gate calibration techniques.

Programming the Hardware

FIG. 2 1s a flowchart of an example process 200 for
training quantum evolutions using sublogical controls. For
convenience, the process 200 will be described as being
performed by a system of one or more classical or quantum
computing devices located in one or more locations. For
example, a quantum evolution training system, e.g., the
quantum evolution training system 100 of FIG. 1, appropri-
ately programmed 1n accordance with this specification, can
perform the process 200.

The system accesses quantum hardware, e.g., quantum
hardware 102 of FIG. 1 (step 202). The quantum hardware
may 1nclude a quantum system comprising one or more
multi-level quantum subsystems, e.g., quantum system 112
of FIG. 1, and one or more control devices that operate on
the one or more multi-level quantum subsystems according
to one or more respective control parameters, e.g., control
devices 114 and respective control parameters 118 of FIG. 1.
The respective control parameters may include physical
control parameters. Example multi-level quantum systems
and control devices that operate thereon are described above
with reference to FIG. 1.

The quantum hardware may include a quantum circuit
which, 1n turn, may include one or more quantum logic gates
that operate on the quantum system through one or more
respective control parameters. In some implementations the
system may calibrate one or more of the quantum logic gates
included 1n the quantum hardware using the control devices.
For example, for each quantum gate that 1s to be calibrated,
the system may define a correct action of the quantum gate
on the quantum system and perform a measurement to
determine the action of the quantum gate on the quantum
system. In response to determining that the action of the
quantum gate on the quantum system 1s not correct, the
system may adjust the corresponding control parameters for

the quantum gate. In some 1implementations the system may
combine the process 200 with quantum gate calibration

techniques, e.g., when the quantum hardware includes

advanced architecture.
The system initializes the quantum system in an initial
quantum state (step 204). An 1mitial set of control parameters
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may form a parameterization that defines the nitial quantum
state. The mitialized quantum state may be a parameterized
quantum state, e€.g., an ansatz, or “guess”’, wavetfunction with
the control parameters forming the parameterization for the
quantum state. In some implementations the initial quantum
state 1s a state of a resonator that 1s coupled to a supercon-
ducting qubit. Such resonator states are controllable and
may form a variational ansatz.

The system obtains one or more quantum system observ-
ables and one or more target quantum states (step 206).

In some implementations the process 200 for training
quantum evolutions using sublogical controls may be
applied to quantum simulation tasks, e.g., preparing and
studying physically interesting states. In such cases, the
system may receive one or more quantum system observ-
ables that include a Hamiltonian of the quantum system. The
system may further receive one or more target quantum
states that include one or more eigenstates of the defined
Hamiltoman. For example, the received quantum system
observable may be a molecular electronic structure Hamil-
tonian and a corresponding target quantum state may include
a ground state of the molecular electronic structure Hamil-
tonian. In another example, the received quantum system
observable may be a Fermi-Hubbard model Hamiltonian and
corresponding target quantum states may include one or
more eigenstates of the Hamiltonian. Generally, the process
200 may be applied to quantum simulation tasks that involve
the study of any physical system that 1s hard to study due to
quantum mechanics.

In other implementations the process for training quantum
evolutions using sublogical controls 200 may be applied to
machine learning tasks, e.g., solving optimization tasks. In
such cases, the system may receive one or more quantum
system observables that may include a Hamiltonian of the
quantum system. The system may further receive a target
quantum state that encodes a solution to an optimization task
into the ground state of the quantum system. Applications of
training quantum evolutions using sublogical controls to
machine learning tasks i1s described 1n more detail below
with reference to FIG. 3.

The system iteratively trains until the occurrence of a
completion event (step 208). The system may iteratively
train changes from the 1nitial quantum state to achieve the
one or more target states. In some implementations the
system may iteratively train evolutions of the mitial quan-
tum state and subsequent quantum states to realize the one
or more target quantum states. The evolutions may be analog
evolutions. The 1terative training may be performed until the
occurrence of a completion event, e.g., until the analog
evolutions of the mnitial quantum state and subsequent quan-
tum states converge. Iteratively training analog evolutions of
a quantum state 1s described in more detail below with
reference to FIG. 3.

The system provides the target quantum state for experi-
mental probing (step 210). The system may provide the
target quantum state for experimental probing in response to
determining that the completion event has occurred. For
example, as described above with reference to step 206, 1n
some 1mplementations the process 200 may be applied to
quantum simulation tasks, e.g., preparing and studying
physically interesting states. In examples where at least one
of the system observables includes a Hamiltonian of the
quantum system and the one or more target quantum states
include one or more eigenstates of the Hamiltonian, experi-
mental probing may include measuring the energy of one or
more of the eigenstates to determine corresponding energy
cigenvalues of the eigenstates. For example, in implemen-
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tations where a system observable 1s a molecular electronic
structure Hamiltonian and a target quantum state includes a
ground state of the molecular electronic structure Hamilto-
nian, experimental probing may include measuring the tar-
get quantum state to determine the ground state energy.

Similarly, as described above with reference to step 2060,
in other implementations the process 200 may be applied to
machine learning tasks, e.g., solving optimization tasks. In
examples where target characteristics of the target quantum
state include encoding a solution to an optimization task into
the ground state of the quantum system, experimental prob-
ing may include solving a machine learning problem, e.g.,
obtaining a solution to the optimization problem.

FIG. 3 1s a flowchart of an example process 300 for
training analog evolutions of a quantum state. For example,
the process 300 may describe an iteration of training evo-
lutions of an mitial quantum state and subsequent quantum
states to realize a target quantum state, as described above at
step 208 of FIG. 2. For convenience, the process 300 will be
described as being performed by one or more computing
devices located 1n one or more locations. For example, a
quantum evolution training system, e.g., the quantum evo-
lution traming system 100 of FIG. 1, appropriately pro-
grammed 1n accordance with this specification, can perform
the process 300.

The guantum evolution training system determines a
value of a cost function (step 302). The cost function may be
based on a quantum state for the iteration and one or more
system observables.

In some 1mplementations the value of the cost function
that 1s based on a quantum state and one or more system
observables may be an expectation value of the quantum
state and one or more of the system observables. The
quantum evolution training system may determine an expec-
tation value of the quantum state and one or more of the
system observables by repeatedly mitializing the quantum
system 1n an 1mtial quantum state. In some implementations
cach mitialized quantum state 1s different from each other
initialized quantum state. For each initialized quantum state,
the system may measure the one or more system observables
to determine a set of measurement results. Based on the set
of measurement results, the quantum evolution training
system may determine an expectation value of the quantum
state and one or more of the system observables. In some
implementations the quantum evolution training system may
determine an expectation value of the quantum state and one
or more of the system observables by determining an
expectation value of a density operator and the one or more
system observables.

In some implementations the value of the cost function
that 1s based on a quantum state and one or more system
observables may not be an expectation value of the quantum
state and a system Hamiltonian but rather a minimum value
ol an objective function defined by another observable of the
quantum system. For example, as described above with
reference to FIG. 2, the processes 200 and 300 may be
applied to machine learning tasks, e.g., solving optimization
tasks, which may always be expressed as a task that requires
the minmimization of a corresponding objective function.

An example of such a machine learning task 1s the training
ol a binary classifier using noisy data. This may be viewed
as a machine learning problem 1n which training data is
provided as a vector of N features denoted by x,. There may
be M training examples that may be each associated with a
binary label, e.g., O or 1, denoted as y,. The training problem
may be formulated as to determine an optimal classifier that
predicts the data by classitying example 1. Therefore, the
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goal may be to find a function F such that F(x, )=y, for all (x,,
y.) 1in the training set. This problem may become formally
hard when there 1s label noise in the data which may make
it 1mpossible to satisty all examples. In order to train
classifiers with noisy data non-convex loss functions may be

used as 0-1 loss, which are robust to label noise. For

—
example, 11 F 1s parameterized in terms of variables 0 the

training problem may be formulated as to choose 0 1na way

that mimimizes the quantity E(?):ZI.:lM sign(y F(x,)). The
classifier may be viewed as a hyperplane in feature space
which divides data points into negative and positive classi-
fications. The distance that example 1 falls from the classi-
fication hyperplane may be referred to as a margin. In this

example, the sign function 1s a loss function and v, F(x,) 1s a
margin. A negative margin may represent a classification
opposite the traimming label and a positive margin may
represent a classification consistent with the traiming label.

This optimization may be performed using quantum evo-
lutions that are trained with sublogical controls, e.g., using
processes 200 and 300. For example, at step 204 of process
200 the corresponding quantum hardware may be nitialized
in a state that encodes one of the x,, denoted for example by
|$,) , and F may be defined as an observable of the output

state U(?)m) , Where U(?) 1s the training objective which
may be computed by using the quantum circuit to classify
cach of the x,. The value of the cost function that 1s to be

minimized may therefore be given by {(i)iIUT(?)

FU(?)I(‘)I-) . The margin, loss and empirical risk may then be
computed using standard techniques. Once a cost function 1s
defined, a process for training quantum evolutions using
sublogical controls may be used to find a quantum state
which minimizes the defined cost function.

An additional example of a machine learning task to
which the processes 200 and 300 may be applied 1s the
training of a neural network. The training of a neural
network may be cast as a process for tramning quantum
evolutions using sublogical controls by choosing, {for
example, a cost function represented by a Kullback-Leibler
divergence between the probability distribution associated

with a state Iw(?)) and a model implied by training data.

The quantum evolution training system minimizes the
value of the cost function to determine updated values of the
control parameters (step 304). In some implementations the
quantum evolution training system minimizes the value of
the cost function to determine updated values of the control
parameters by adjusting the control parameters, e.g., adjust-
ing physical control parameters. For example, the param-
cters that determine a pulse shape that may induce local
fields on particular qubits may be adjusted by changing
corresponding pixels on a voltage DAC. As another
example, when the quantum hardware includes an 10n trap
the qubits may be controlled using lasers, and the parameters
that determine a laser pulse shape or intensity may be
adjusted. Other control parameters that may be adjusted
include qubit frequencies or chip temperatures. The quan-
tum evolution traiming system may minimize the value of the
cost function to determine updated values of the control
parameters by performing a gradient-free greedy minimiza-
tion method, e.g., Powell’s method or Nelder-Mead. For
example, 1f the cost function 1s an expectation value of a
quantum state and one or more system observables, the
quantum evolution training system may perform a greedy
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mimmization of the energy landscape 1n order to suggest a
new setting of system parameters, e.g., hardware control
parameters.

The quantum evolution training system iteratively per-
forms steps 302 and 304 until 1t 1s determined that a
completion event has occurred (step 306). In some 1mple-
mentations the completion event is that the determined value
ol the cost function that 1s based on the state and one or more
of the system observables as described above with reference
to step 302 converges.

Implementations of the digital and/or quantum subject
matter and the digital functional operations and quantum
operations described in this specification can be imple-
mented 1n digital electronic circuitry, suitable quantum cir-
cuitry or, more generally, quantum computational systems,
in tangibly-embodied digital and/or quantum computer soit-
ware or firmware, 1n digital and/or quantum computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or 1n combinations of one or
more of them. The term “quantum computational systems”™
may include, but 1s not limited to, quantum computers,
quantum information processing systems, quantum cryptog-
raphy systems, or quantum simulators.

Implementations of the digital and/or quantum subject
matter described in this specification can be implemented as
one or more digital and/or quantum computer programs, 1.€.,
one or more modules of digital and/or quantum computer
program 1nstructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The digital and/or quantum
computer storage medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a random
or serial access memory device, one or more qubits, or a
combination of one or more of them. Alternatively or 1n
addition, the program instructions can be encoded on an
artificially-generated propagated signal that 1s capable of
encoding digital and/or quantum information, e.g., a
machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode digital and/or quantum
information for transmission to suitable receiver apparatus
for execution by a data processing apparatus.

The terms quantum 1nformation and quantum data refer to
information or data that i1s carried by, held or stored in
quantum systems, where the smallest non-trivial system 1s a
qubit, 1.e., a system that defines the unit of quantum infor-
mation. It 1s understood that the term “qubit” encompasses
all quantum systems that may be suitably approximated as a
two-level system 1n the corresponding context. Such quan-
tum systems may include multi-level systems, e.g., with two
or more levels. By way of example, such systems can
include atoms, electrons, photons, 10ons or superconducting
qubits. In many implementations the computational basis
states are 1dentified with the ground and first excited states,
however 1t 1s understood that other setups where the com-
putational states are idenfified with higher level excited
states are possible. The term “data processing apparatus”
refers to digital and/or quantum data processing hardware
and encompasses all kinds of apparatus, devices, and
machines for processing digital and/or quantum data, includ-
ing by way of example a programmable digital processor, a
programmable quantum processor, a digital computer, a
quantum computer, multiple digital and quantum processors
or computers, and combinations thereof. The apparatus can
also be, or further include, special purpose logic circuitry,
¢.g., an FPGA (field programmable gate array), an ASIC
(application-specific integrated circuit), or a quantum simu-
lator, 1.e., a quantum data processing apparatus that is

10

15

20

25

30

35

40

45

50

55

60

65

14

designed to simulate or produce information about a specific
quantum system. In particular, a quantum simulator 1s a
special purpose quantum computer that does not have the
capability to perform universal quantum computation. The
apparatus can optionally include, in addition to hardware,
code that creates an execution environment for digital and/or
quantum computer programs, €.g., code that constitutes
processor firmware, a protocol stack, a database manage-
ment system, an operating system, or a combination of one
or more of them.

A digital computer program, which may also be referred
to or described as a program, software, a software applica-
tion, a module, a software module, a script, or code, can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other umt suitable for use 1n a digital
computing environment. A quantum computer program,
which may also be referred to or described as a program,
soltware, a software application, a module, a software
module, a script, or code, can be written 1n any form of
programming language, including compiled or interpreted
languages, or declarative or procedural languages, and trans-
lated 1nto a suitable quantum programming language, or can
be written 1n a quantum programming language, e.g., QCL
or Quipper.

A digital and/or quantum computer program may, but
need not, correspond to a file 1n a file system. A program can
be stored 1n a portion of a file that holds other programs or
data, e.g., one or more scripts stored 1n a markup language
document, in a single file dedicated to the program 1n
question, or in multiple coordinated files, e.g., files that store
one or more modules, sub-programs, or portions of code. A
digital and/or quantum computer program can be deployed
to be executed on one digital or one quantum computer or on
multiple digital and/or quantum computers that are located
at one site or distributed across multiple sites and intercon-
nected by a digital and/or quantum data communication
network. A quantum data communication network 1s under-
stood to be a network that may transmit quantum data using,
quantum systems, e€.g. qubits. Generally, a digital data
communication network cannot transmit quantum data,
however a quantum data communication network may trans-
mit both quantum data and digital data.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
digital and/or quantum computers, operating with one or
more digital and/or quantum processors, as appropriate,
executing one or more digital and/or quantum computer
programs to perform functions by operating on input digital
and quantum data and generating output. The processes and
logic flows can also be performed by, and apparatus can also
be implemented as, special purpose logic circuitry, e.g., an
FPGA or an ASIC, or a quantum simulator, or by a combi-
nation of special purpose logic circuitry or quantum simu-
lators and one or more programmed digital and/or quantum
computers.

For a system of one or more digital and/or quantum
computers to be “configured to” perform particular opera-
tions or actions means that the system has installed on 1t
software, firmware, hardware, or a combination of them that
in operation cause the system to perform the operations or
actions. For one or more digital and/or quantum computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by digital and/or quantum
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data processing apparatus, cause the apparatus to perform
the operations or actions. A quantum computer may receive
istructions from a digital computer that, when executed by
the quantum computing apparatus, cause the apparatus to
perform the operations or actions.

Digital and/or quantum computers suitable for the execu-
tion of a digital and/or quantum computer program can be
based on general or special purpose digital and/or quantum
processors or both, or any other kind of central digital and/or
quantum processing unit. Generally, a central digital and/or
quantum processing unit will receive 1nstructions and digital
and/or quantum data from a read-only memory, a random
access memory, or quantum systems suitable for transmit-
ting quantum data, e.g. photons, or combinations thereof.

The essential elements of a digital and/or quantum com-
puter are a central processing unit for performing or execut-
ing 1nstructions and one or more memory devices for storing
instructions and digital and/or quantum data. The central
processing unit and the memory can be supplemented by, or
incorporated in, special purpose logic circuitry or quantum
simulators. Generally, a digital and/or quantum computer
will also include, or be operatively coupled to receive digital
and/or quantum data from or transfer digital and/or quantum
data to, or both, one or more mass storage devices for storing
digital and/or quantum data, e.g., magnetic, magneto-optical
disks, optical disks, or quantum systems suitable for storing
quantum information. However, a digital and/or quantum
computer need not have such devices.

Digital and/or quantum computer-readable media suitable
for storing digital and/or quantum computer program
instructions and digital and/or quantum data include all
forms of non-volatile digital and/or quantum memory, media
and memory devices, icluding by way of example semi-
conductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto-optical disks; CD-ROM
and DVD-ROM disks; and quantum systems, e.g., trapped
atoms or electrons. It 1s understood that quantum memories
are devices that can store quantum data for a long time with
high fidelity and efliciency, e.g., light-matter interfaces
where light 1s used for transmission and matter for storing
and preserving the quantum features of quantum data such
as superposition or quantum coherence.

Control of the various systems described in this specifi-
cation, or portions of them, can be implemented 1n a digital
and/or quantum computer program product that includes
instructions that are stored on one or more non-transitory
machine-readable storage media, and that are executable on
one or more digital and/or quantum processing devices. The
systems described in this specification, or portions of them,
can each be implemented as an apparatus, method, or system
that may include one or more digital and/or quantum pro-
cessing devices and memory to store executable instructions
to perform the operations described 1n this specification.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of what may be claimed, but rather as
descriptions of features that may be specific to particular
implementations. Certain features that are described 1n this
specification 1n the context of separate implementations can
also be implemented 1n combination 1n a single implemen-
tation. Conversely, various features that are described 1n the
context of a single implementation can also be implemented
in multiple implementations separately or i any suitable
sub-combination. Moreover, although features may be
described above as acting 1n certain combinations and even
mitially claimed as such, one or more features from a
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claimed combination can in some cases be excised from the
combination, and the claamed combination may be directed
to a sub-combination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components 1n the implementations described
above should not be understood as requiring such separation
in all implementations, and 1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged mnto multiple software products.

Particular implementations of the subject matter have
been described. Other implementations are within the scope
of the following claims. For example, the actions recited 1n
the claims can be performed 1n a different order and still
achieve desirable results. As one example, the processes
depicted 1n the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In some cases, multitasking and
parallel processing may be advantageous.

What 1s claimed 1s:

1. A method for calibrating one or more quantum gates,
the method comprising:

for a classical processor 1n communication with quantum

hardware, the quantum hardware comprising 1) a quan-

tum system comprising one or more multi-level quan-

tum subsystems and 1) control devices that operate on

the one or more multi-level quantum subsystems,

wherein control parameters of the control devices com-

prise physical control parameters and form a variational

ansatz:

measuring, by the quantum hardware, an action of one
or more quantum gates on the quantum system;

comparing, by the classical processor, the measured
action to a predefined target action of the one or more
quantum gates:

determining whether the measured action differs to the
predefined target action; and

in response to determining that the measured action
differs to the predefined target action, adjusting the
control parameters of the control devices to 1tera-
tively calibrate, within the variational ansatz, the
action of the one or more quantum gates on the
quantum system.

2. The method of claim 1, wherein 1teratively calibrating,
the action of the one or more quantum gates on the quantum
system comprises 1teratively training changes from an initial
quantum state to achieve a quantum state evolution that
represents the predefined target action of the one or more
quantum gates.

3. The method of claim 2, wherein the completion event
1s that the determined value of the cost function converges.

4. The method of claim 1, wherein 1teratively calibrating
the action of the one or more quantum gates on the quantum
system comprises iteratively training, until the occurrence of
a completion event, evolutions of an initial quantum state
and subsequent quantum states to realize the predefined
target action one or more quantum gates.

5. The method of claim 4, wherein the evolutions are
analog evolutions.

6. The method of claim 1, wherein the iterative calibrating
comprises, for each iteration:
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determining a value of a cost function that 1s based on an
initial ansatz wavefunction or a subsequent quantum
state of the quantum system for the iteration and one or
more of the quantum system observables;
minimizing the value of the cost function to determine
updated values of the physical control parameters; and
determining whether the completion event has occurred.
7. The method of claim 6, wherein minimizing the value
of the cost function to determine updated values of the
physical control parameters comprises adjusting the physi-
cal control parameters.
8. The method of claim 6, wherein the value of the cost
function 1s an expectation value of the mnitial ansatz wave-
function or subsequent quantum state and one or more of the

quantum system observables.

9. The method of claim 8, wherein determining an expec-
tation value of the initial ansatz wavefunction or subsequent
quantum state and one or more of the system observables
COmMprises:

repeatedly preparing the mnitial ansatz wavefunction;

for each prepared ansatz wavetunction, measuring the one

or more quantum system observables to determine a set
of measurement results;

based on the set of measurement results, determining an

expectation value of the subsequent quantum state of
the quantum system and one or more of the system
observables.

10. The method of claim 6, wherein determiming an
expectation value of the initial ansatz wavefunction or
subsequent quantum state and one or more of the quantum
system observables comprises determining an expectation
value of a density operator and the one or more system
observables.

11. An apparatus comprising:

quantum hardware comprising:

a quantum system comprising one or more multi-level
quantum subsystems; and

one or more control devices that operate on the multi-
level quantum subsystems, wherein one or more
control parameters of the one or more control
devices 1) comprise physical control parameters and
11) form a variational ansatz; and

a classical processor configured to operate the quantum

hardware;

wherein the apparatus 1s configured to perform operations

comprising;

measuring an action of one or more quantum gates on
the quantum system;

comparing the measured action to a predefined target
action of the one or more quantum gates;

determining whether the measured action differs to the
predefined target action; and

in response to determining that the measured action
differs to the predefined target action, adjusting the
control parameters of the control devices to itera-
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tively calibrate, within the variational ansatz, the
action of the one or more quantum gates on the
quantum system.

12. The apparatus of claim 11, wherein iteratively cali-
brating the action of the one or more quantum gates on the
quantum system comprises iteratively traiming changes from
an 1n1tial quantum state to achieve a quantum state evolution
that represents the predefined target action of the one or
more quantum gates.

13. The apparatus of claim 12, wherein the completion
event 1s that the determined value of the cost function
converges.

14. The apparatus of claim 11, wherein iteratively cali-
brating the action of the one or more quantum gates on the
quantum system comprises iteratively training, until the
occurrence of a completion event, evolutions of an mitial
quantum state and subsequent quantum states to realize the
predefined target action one or more quantum gates.

15. The apparatus of claim 14, wherein the evolutions are
analog evolutions.

16. The apparatus of claam 11, wherein the iterative
calibrating comprises, for each iteration:

determining a value of a cost function that 1s based on an

initial ansatz wavefunction or a subsequent quantum
state of the quantum system for the iteration and one or
more of the quantum system observables;

minimizing the value of the cost function to determine

updated values of the physical control parameters; and
determiming whether the completion event has occurred.
17. The apparatus of claim 16, wherein minimizing the
value of the cost function to determine updated values of the
physical control parameters comprises adjusting the physi-
cal control parameters.
18. The apparatus of claim 16, wherein the value of the
cost function 1s an expectation value of the initial ansatz
wavelunction or subsequent quantum state and one or more
of the quantum system observables.
19. The apparatus of claim 18, wheremn determining an
expectation value of the imtial ansatz wavefunction or
subsequent quantum state and one or more of the system
observables comprises:
repeatedly preparing the initial ansatz wavetunction;
for each prepared ansatz wavefunction, measuring the one
or more quantum system observables to determine a set
ol measurement results;

based on the set of measurement results, determining an
expectation value of the subsequent quantum state of
the quantum system and one or more of the system
observables.

20. The apparatus of claim 16, wherein determining an
expectation value of the imtial ansatz wavefunction or
subsequent quantum state and one or more of the quantum
system observables comprises determining an expectation
value of a density operator and the one or more system
observables.
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