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(37) ABSTRACT

A computer-implemented method for refining a qubit cali-
bration model 1s described. The method comprises receiv-
ing, at a learning module, training data, wherein the training
data comprises a plurality of calibration data sets, wherein
cach calibration data set 1s derived from a system compris-
ing one or more qubits, and a plurality of parameter sets,
cach parameter set comprising extracted parameters
obtained using a corresponding calibration data set, wherein
extracting the parameters includes fitting a qubit calibration
model to the corresponding calibration data set using a fitter
algorithm. The method further comprises executing, at the
learning module, a supervised machine learning algorithm
which processes the training data to learn a perturbation to
the qubit calibration model that captures one or more
teatures 1n the plurality of calibration data sets that are not
captured by the qubit calibration model, thereby to provide
a refined qubit calibration model.
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REFINING QUBIT CALIBRATION MODELS
USING SUPERVISED LEARNING

[0001] This application 1s a continuation application of,
and claims priority to, U.S. patent application Ser. No.

16/772,387, filed Jun. 12, 2020, which application 1s a
National Stage Application under 35 U.S.C. § 371 and
claims the benefit of International Application No. PCT/
US2017/066766, filed Dec. 15, 2017. The disclosures of the
foregoing applications are hereby incorporated by reference
in their entirety.

[0002] This specification relates to quantum computing. In
particular, 1t relates to refining qubit calibration models
using supervised learning.

[0003] Computation on a quantum computer can be real-
1zed by manipulating physical quantum bits (qubits). How-
ever 1n order to operate a physical qubit 1n a useful capacity,
many parameters relating to the qubit may need to be
calibrated. Various techniques have been developed to cali-
brate such parameters.

[0004] In one example aspect, the present specification
describes an automated qubit calibration method. The
method comprises performing calibrations on one or more
qubits to obtain calibration data sets and corresponding
extracted parameter sets. Performing each calibration com-
prises obtaining a calibration data set from a system com-
prising one or more qubits, and determining one or more
extracted parameters. Determining one or more extracted
parameters comprises fitting one or more parameters of a
qubit calibration model to the calibration data set, using a
fitter algorithm. The one or more extracted parameters may
be stored, and the qubit calibration model may be refined
using at least some of the calibration data sets and corre-
sponding stored parameters.

[0005] In one example aspect, refining a qubit calibration
model comprises receiving, at a learning module, training,
data, wherein the training data comprises: a plurality of
calibration data sets, each calibration data set being derived
from a system comprising one or more qubits, and a plurality
of parameter sets, each parameter set comprising extracted
parameters obtained using a corresponding calibration data
set, wherein extracting the parameters includes fitting a
model to the corresponding calibration data set using a fitter
algorithm. Refining the qubit calibration model may further
comprise executing, at the learning module, a supervised
learning algorithm which processes the training data to learn
a refined qubit calibration model that captures one or more
teatures 1n the plurality of calibration data sets that are not
captured by the qubit calibration model. The refined qubait
calibration model may allow qubit parameters to be
extracted more reliably. This results 1n a technical improve-
ment 1n the field of quantum computing.

[0006] So that the mvention may be more easily under-
stood, embodiments thereol will now be described, by way
of example only, with reference to the accompanying fig-
ures, 1n which:

[0007] FIG. 1 1s a schematic illustration of a system
comprising a physical qubit.

[0008] FIG. 2 illustrates an automated qubit calibration
workilow 1n accordance with one example embodiment;

[0009] FIG. 3 illustrates steps 1n a method for calibrating
a qubit;
[0010] FIG. 4 1llustrates steps 1n a method for learming a

new qubit calibration model;

Sep. 28, 2023

[0011] FIG. 5 1s an illustration depicting: calibration data
for a regression-based calibration; an existing model, and a
refined model;

[0012] FIG. 6 1s an illustration depicting: calibration data
for a classification-based calibration; an existing model, and
a refined model:

[0013] FIG. 7(a) 1s an 1illustration depicting calibration
data;
[0014] FIG. 7(b) 1s an 1illustration depicting an existing

calibration model function:
[0015] FIG. 7(¢) 1s an 1llustration depicting a perturbation
formed by three basis expansion functions;

[0016] FIG. 7(d) 1s an 1illustration depicting a refined
model;
[0017] FIG. 7(e) 1s an 1illustration depicting a fit of the

refined model to a calibration data set.

OVERVIEW

[0018] Examples aspects of the present disclosure relate to
refining qubit calibration models using supervised learning.
[0019] FIG. 1 1s a schematic depicting a system 100
comprising a physical qubit 102, and control and measure-
ment apparatus 104 for mteracting with the qubit 102. The
qubit may be one of a plurality of qubits which form the
qubit system of a quantum computer. Suitable control and
measurement apparatus for interacting with the qubit 102 by
varying hardware parameters and measuring the response of
the system 100 are known per se to those skilled 1n the art
of quantum computing and will not be described in any
detail here. In various examples the qubit may be a super-
conducting qubit, or may comprise a system based on one or
more 10n traps, quantum dots, neutral atoms, Rydberg states,
solid-state defects, molecules, or photons.

[0020] In order to operate a physical qubit in a useful
capacity, many parameters relating to the qubit (e.g. 1n some
cases more than fifty parameters per qubit), may need to be
calibrated, some or all of which may depend on other
parameters and their calibrations. Examples of parameters
which may be calibrated include qubit frequency, qubit
anharmonicity, p1 pulse length, p1/2 pulse length, p1 pulse
amplitude, p1/2 pulse amplitude, readout pulse frequency,
readout pulse length, and readout pulse power.

[0021] Calibrating a qubit may comprise varying hard-
ware parameters of the system 100, measuring the response
of the system 100, and using the measured results to obtain
values for one or more qubit parameters. It will be under-
stood that as used herein, the term “qubit parameter” refers
to any parameter associated with a qubit, including qubit
control parameters relating to e.g. qubit control and/or
measurement hardware.

[0022] The hardware parameters that are varied when
taking calibration data may be given by an array x, where
cach element of x can for example be a time, a voltage, a
phase or frequency of a microwave pulse, the length of a
pulse, or other suitable parameter. The system response S(x)
may be a real number representing voltage, or a phase of a
microwave pulse, etc, and so may for example be defined by
x=(voltage amplitude 1, voltage amplitude 2, . . . , phase).
Alternatively, or in addition, the system response may
comprise a discriminatory label such as 0, 1, etc representing
a qubit state.

[0023] In an exemplary method according to one aspect of
the present disclosure, calibration procedures are performed
to determine one or more values for one or more parameters
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relating to the qubit. Such calibration procedures may be
referred to herein as “calibrations”. An example of a cali-
bration 1s a Rabi driving calibration, which may be used to
extract a parameter such as the driving length of a p1-pulse.
Another example of a calibration 1s a qubit frequency
calibration which may be used to determine the frequency at
which to drive a qubit. Other examples include calibration
procedures to determine values for operating bias points,
readout power, or other parameters. Data that 1s taken during,

a calibration procedure may be referred to herein as “cali-
bration data”.

[0024] The calibration data may comprise some or all of
the system response signal S(x), or 1t may be derived from
the measured system response signal S(x) by pre-processing,
the system response signal S(x), e.g. by applying one or
more mathematical/statistical/discriminatory transforma-
tions to the system response signal S(x), €.g. using dimen-
sionality reduction such as principal component analysis.

[0025] Performing a calibration may include fitting one or
more parameters ol a qubit calibration model to the calibra-
tion data, using a {itter algorithm, thereby to obtain one or
more fitted values from which one or more parameters
relating to the qubit may be inferred. The qubit calibration
model may be heuristic, theoretical (derived from physical
theory (e.g. by a theorist)), or 1t may be a model which has
been modified or developed using machine learning in
accordance with various examples disclosed herein.

[0026] Depending on the calibration, the fitter may imple-
ment a regression or classification algorithm. For regression-
based calibrations, the method may include obtaining the
best fit parameters of the qubit calibration model to the data,
and inferring qubit parameters from those best-fit param-
eters. For classification-based calibrations, the method may
include extracting parameters defining a decision boundary,
by analysing the calibration data using a qubit calibration
model. In this case S(x) may comprise a discriminatory label
such as 0, 1, 2 etc which may for example represent a qubit
state.

[0027] Qubat calibration models may be physical models
(1.e. they may be derived from physics theory), or they may
be heuristic models. Many calibration models, which are
either heuristic or derived from physics theory (e.g. “toy
models™) can sometimes be too simple for reliably extract-
ing parameters at scale. This may for example be due to
impertections in hardware or due to simplifications that were
made when deriving the model, for example leaving out
higher qubit levels or auxiliary hardware, or due to unfore-
seen physics governing the behaviour of the qubit. Refining
a toy model starting from first physical principles can be
exceptionally difficult.

[0028] In an exemplary method according to one aspect of
this disclosure, a learning module refines a qubit calibration
model using a supervised machine learning algorithm. The
supervised machine learming algorithm may be trained using
training data comprising a plurality of calibration data sets
obtained by performing a calibration on multiple occasions
on the same or diflerent qubits. The tramning data also
includes extracted parameter sets corresponding to the cali-
bration data sets. Each extracted parameter set may comprise
one or more qubit parameters which have been extracted
using the methodology that has been discussed above.

[0029] The learning module may process the training data
to learn a perturbation g(x, p') to the qubit calibration model
sO as to obtain a refined qubit calibration model which may
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capture features in the calibration data which are not cap-
tured by the model 1(x, p). Such features may comprise
“imperfections” 1n the calibration data which are consistent
across many calibration data sets. By “imperfection”, we
mean any feature which 1s present 1n the calibration data but
not represented by the model 1(x, p): examples include
teatures resulting from higher order effects or unforeseen
physics. Thus, the refined qubit calibration model may better
represent the calibration data compared to the original model
f(x, p).

[0030] In this way the refined qubit calibration model may
allow parameters to be extracted more reliably. More spe-
cifically, parameters for a given qubit may be extracted using
a calibration model developed from a large subset of all
previously calibrated qubits. The perturbative refinement fits
away consistent imperfections across the calibration data to
make 1t easier to extract the qubit parameters, thereby
improving qubit calibration.

[0031] In some cases, the perturbative refinement may
also allow extraction of one more qubit parameters which
could not be extracted using the original model, thereby
allowing intelligent seeding or supplanting of other calibra-
tions, and so improving the calibration process further. As
described 1n more detail below, a basis expansion method
along with a supervised learning algorithm may be used to
refine the qubit calibration model.

[0032] For regression-based calibrations, the machine
learning algorithm may comprise a linear or nonlinear
regression algorithm such as linear or nonlinear least squares
or neural network regression. For classification-based cali-
brations, the machine learning algorithm may comprise
linecar or nonlinear machine learning classifiers, including
classifiers based on least squares, nearest-neighbour meth-
ods, linear discriminant analysis, quadratic discriminant
analysis, logistic regression, support vector machines or
neural networks. In some cases, ensemble learning may be
employed, e.g. multiple learning algorithms may be com-
bined 1mto a single learning algorithm that combines the
constituent algorithms’ strengths. Ensemble learning may be
employed for both regression and classification algorithms.

[0033] FIG. 2 illustrates an automated qubit calibration
workilow 1n accordance with one example embodiment. As
shown, a qubit g1 may be selected from the qubit stack 202.
For each calibration X 1in the calibration stack 204, the
method 300 illustrated in FIG. 3 may be performed. As
shown, calibration data may be taken 302, and pre-processed
303, e.g. by re-scaling, dimensionality reduction etc. A
model may be selected 304 from the model stack 206 to
analyse the calibration data (calibration data X uses model
X, for example). The calibration data may be analysed 306
using a fitter 207.

[0034] Depending on the calibration the fitter 207 may
implement a regression algorithm or a classification algo-
rithm. For regression-based calibrations, the best-fit param-
cters of the selected model to the calibration data may be
extracted, and a parameter set may be inferred from those
best-fit parameters. For classification-based calibrations, a
decision boundary may be extracted by analysing the cali-
bration data via the algorithm given by model X. In either
case, the extracted parameters may be stored 308 in the
parameter stack 208.

[0035] Processing Training Data

[0036] A tramning stack 210 may be developed using the
stored calibration data and corresponding parameters sets.
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The tramning stack may be updated regularly after some
number of calibrations or time interval (e.g. weekly). To
update the tramning stack 210, calibration data and corre-
sponding extracted parameter sets may be pulled from the
calibration and parameters stacks 204, 208 for many qubits
(e.g. across many chips).

[0037] One or more discrimination processes 212, 214
may be executed to discriminate “good” and “bad” data. In
a first discrimination process 212, calibration data 1s evalu-
ated to determine whether 1t 1s “good” calibration data or
“bad” calibration data. In a second discrimination process
214, parameter sets are evaluated to determine whether they
are “good” or “bad” parameter sets.

[0038] “Good” calibration data means that one should be
able to extract the correct parameter set from 1t. From the
hardware perspective this means that the qubit 1s good and
the hardware was set up properly when the data was taken.
On the other hand, “bad” calibration data means that one
cannot extract the correct parameter set from it (e.g. the
calibration data 1s noise). This can result for example due to
fabrication errors 1 manufacture of the qubit, or 1T the
hardware was not set up properly when taking data. Cali-
bration data may be discriminated using an independently
trained classification algorithm to decide whether the cali-
bration data i1s good or bad. Alternatively, or 1n addition,
calibration data may be discriminated based on whether a
later calibration was carried on the qubit (e.g. the last
calibration 1n a calibration sequence). If a qubit “makes it
to the last calibration 1s a sequence of calibrations, this
suggests that good calibration data was probably acquired
for all previous calibrations in the sequence. “Bad” calibra-
tion data set may be discarded, 1.e. not be added to the
training stack (together with corresponding parameter sets).

[0039] A second discrimination process 214 may be
employed to determine 1f parameter sets are “good” or “bad”
parameter sets. A “good” parameter set means that a param-
cter set was extracted which accurately describes the qubait
or which 1s at least capable of accurately describing a qubiat.
A “bad” parameter set means that an incorrect parameter set
was extracted. Data sets where the calibration data 1s “good”
but the parameter set 1s “bad” are useful 1n that they may
help an algorithm to learn to minimise such occurrences.
Furthermore, they are useful for benchmarking models
against one another. Parameter sets may be discriminated by
applying one or more thresholds to the parameter set, e.g. the
parameter set should fall within some hardware-defined
limit(s).

[0040] Good calibration data and corresponding extracted
parameter sets may be added to the training stack. A binary
and/or real-number indicator may be included with each
training example to specily if the parameter set has been

determined “good” or “bad” and/or the extent to which 1t 1s
“000d” or “bad”.

[0041] Learning a New Model

[0042] A qubait calibration model for each calibration may
be developed or updated using data 1n the training stack. The
model may be updated for example after some regular
number of calibrations or time interval (e.g. weekly). FIG. 4
illustrates a method for learning a new qubit calibration
model. As shown, 1n step 401, the training data 1s prepro-
cessed (e.g. by re-scaling/dimensionality reduction). In step
402 the training data 1s split into training/validation/test data
sets. The training and validation data may be received 404
at a learning module 216. In step 406, the learning module
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selects a supervised machine learning algorithm 218, which
1s fed into the learming module 216. For regression-based
calibrations, the supervised machine learning algorithm may
comprise a linear or nonlinear regression algorithm such as
linear or nonlinear least squares or neural network regres-
sion. For classification-based calibrations, the machine
learning algorithm may comprise linear or nonlinear
machine learning classifiers, including classifiers based on
least squares, nearest-neighbour methods, linear discrimi-
nant analysis, quadratic discriminant analysis, logistic
regression, support vector machines or neural networks. In
some cases, ensemble learming may be employed, e.g.
multiple learning algorithms may be combined 1nto a single
learning algorithm that combines the constituent algorithms’
strengths. Ensemble learning may be employed for both
regression and classification algorithms.

[0043] In step 408, a test model 1s fed into the learning
module 216. In principle any rich enough test model (e.g. a
higher-order polynomial or Fourier expansion) should return
a good model for any set of consistent training data. How-
ever an 1ssue with this “blind” approach 1s that it might not
be clear how to generally and reliably extract the parameter
set from that model. For this reason, the test model may
instead be formed by adding a perturbation to an existing
qubit calibration model. The purpose of the perturbative
“refilnement” 1s to fit away imperiections to make 1t easier to
extract “good” parameter sets at scale. For regression 1n
particular, the refinement makes i1t easier to access the
parameter set via the non-perturbed model. As noted above,
the existing model may be a model which has roots in
physics theory, or may be a heuristic model, or 1t may be a
model which has been previously been refined by the
learning module 216. The perturbation may be rich enough
to represent consistent deviations of the calibration data in
the training stack from the existing model, but without
impeding the general and reliable extraction of parameter
sets. The complexity of the model may be controlled by
applying some combination of shrinkage, regularization,
restriction, or selection methods. In some examples the test
model may be obtained using a basis expansion method (see
below).

[0044] In step 410, the learning module 216 1s executed to
learn a new model 220 by optimising the test model using
the supervised machine learning algorithm 218. The new
model 220 may then be benchmarked 412, 222 against the
existing model. In particular, a comparison may be made of
the number of good parameter sets extracted for the models
under comparison, using the test data. More generally,
comparisons between models may be made based on one or
more metrics such as test/generalization error, model com-
plexity, and how reliably and generally qubit parameters can
be extracted from the new model.

[0045] The steps 406, 408, 410 and 412 may be repeated
until the new model outperforms the existing model with
respect to the metrics discussed above. In that case, the new
model replaces the existing model in the model stack 206.

Regression and Classification Examples

[0046] As discussed above, qubit calibration models 1(x,
p) may comprise “toy” models, e.g. derived from physics
theory, or heuristic model, or models developed using super-
vised learming as described herein. x and p may be arrays of
arbitrary dimension, which means that calibration data can
have arbitrary dimension and an arbitrary number of model
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parameters can be fitted. During a calibration, the model 1(x,
p) 1s fitted to the calibration data to determine the best fit
parameters, p;,. I'he parameters that are stored in the param-
cter stack 208 (1.e. the “extracted parameters™) are param-
eters relating to the qubit, which may be inferred from pg,.
Hence the parameter set that is stored in the parameter stack
208 may either be some subset of p,, or some function of
some subset of pg,.

[0047] In many cases the fit parameters p;, are “good” in
the sense that they extract correct information about the
qubit. In some cases, however, a poor {it returns a “bad”
parameter set, which can crash the calibration worktlow. In
some cases, there may be some features 1n the calibration
data which are not accounted for 1n the model 1(x, p) but
which are consistent across many calibration data sets for
many qubits, which give rise to difficulties 1n obtaining a
good fit. These background features can be due to compli-
cated eflects that are not included 1n the toy model 1(x, p),.
either intentionally or simply because the underlying physi-
cal eflects are not understood.

Regression Example

[0048] FIG. 5 schematically 1llustrates calibration data 1n
the form of a signal obtained 1n a Rab1 driving calibration.
The calibration data 1s obtained by varying hardware param-
cters 1n the form of control line voltages (Voltage 1 and
Voltage 2) and then measuring the signal of a readout pulse.
The pattern shown in region A 1s expected based on an
existing model. Hence, calibration data may be fitted to the
existing model to obtain parameters pl and p2. Parameter p1
may then be used to infer the pl pulse amplitude and
parameter p2 may be used to infer the qubit frequency. The
vertical line shown 1n region B arises due to higher order
qubit levels, which are not accounted for in the existing
model. The additional lines shown 1n region C are also not
accounted for in the toy model, and relate to unforeseen
physics or other unforeseen eflects. Such “imperfections”,
which are not captured by the existing model, may cause
errors 1n accurate extraction of parameters from the calibra-
tion data. However by employing supervised learning as
described herein, the existing model may be refined to
capture such “impertections”, thereby allowing more reli-
able extraction of qubit parameters. Additionally, the refined
model may enable us to extract an additional parameter p',,
which relates to a higher qubit level. This additional extrac-
tion might enable us to intelligently seed or supplant a future
calibration, further improving the tull calibration procedure.
In particular, the existing model may be perturbatively
refined by applying a regression algorithm (e.g. least square
regression or neural network regression), using a test model,
which may be generated using a basis expansion method.

Classification Example

[0049] FIG. 6 schematically illustrates a calibration in the
form of a signal obtained 1n a qubit readout calibration. The
calibration data i1s obtained by preparing the qubit into one
of 1ts states (this serves as the label) and then measuring the
voltage quadratures (Voltage 1 and Voltage 2) of a readout
pulse. The calibration data comprises at least two “clouds™
of labelled points, and the calibration involves determining
one or more decision boundaries separating the labels. In an
ideal case, the clouds might be the same size and circular and
a trivial decision boundary such as a straight line that is
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perpendicular to the line joining the cloud centers and
haltway between the cloud centers could be used. However,
due to complicated physics and/or other imperfections, 1n
practice the clouds are usually not the same size and are not
circular. Such “imperfections”, which are not captured by
the existing model, may lead to the extraction of a decision
boundary that mis-classifies many labelled points. However
by employing supervised learning as described herein, the
existing model may be refined to capture such “impertec-
tions”, and lead to the extraction of a better decision
boundary that mis-classifies fewer points. For example, the
existing model may be perturbatively refined by applying
least squares classification with a test model generated using
a basis expansion method.

[0050] Perturbative Approach and Basis Expansion
Method
[0051] As discussed above supervised learning may be

used to learn a perturbation g(x, w, p') that captures consis-
tent features 1n the calibration data that are not included in
f(x, p). The refined model 1(x, p, w, p'=I(X, p)+g(x, w, p')
may allow more reliable extraction of qubit parameters. This
perturbation approach may be applied for both regression
and classification examples. For regression, these param-
cters (e.g. the parameter set that 1s stored into the “parameter
stack™) may still be extracted from 1(x, p) and not g(x, w, p')
(€.g. qubit information 1s extracted from pg4, and not p';). For
classification, they may be extracted from the best {it param-
cters of 1(x, p)+g(x, w, p'). For regression, the perturbations
help mimic the data, whereas for classification, the pertur-
bations help to better separate the data. For regression, 1(x,
p, W, p') serves as the “regression function”, while for
classification 1t serves as the “discriminant function”.
[0052] Insome embodiments a basis expansion method, 1n
combination with a supervised learning algorithm, may be
used to find the refined model. This approach may be applied
for both regression and classification examples. In the basis
expansion method, M basis perturbation models are added to
arrive at the total perturbation:

g wp =X Wp L, - o D) T W (XD )

[0053] The test model 1s obtained by adding the pertur-
bation to the existing model:

Lo, 0,0 ) X D) W& (K, 0)

[0054] x—an array of hardware parameters

[0055] p—an array of parameters of the unperturbed
model.

[0056] p'=(p',, ... p's,)—an array of arrays. p'—an

array of parameters of the i1-th basis model.
[0057] w=(w,, ... W, )—weights of the basis models.
One per model;
[0058] g (X, p' ) can apply any linear, nonlinear, or dis-
criminatory transformation on any linear or nonlinear com-
bination of mputs x and p'm. Examples are:
[0059] ¢ (X, p'.)=p, X, (for m=1 ... dim(x)) (linear
model)

[0060] g,.(x, P'm)zzykngkzxijg

[0061] g,(x, P'm)zzykngkz,a Siﬂ(Pykz,lekaz+ngz,2)

[0062] ¢ (x,p' ){aiff(x, p' )>k, else b}, for arbitrary
a, b, kK, 1x, p' )

[0063] Note that basis models can, in general, imple-
ment transiformations of the input variables to include
variables such as :sf;I."""'XJ,.‘?:’voltagef‘z‘f’i‘phaSfe:J.,.z

[0064] Note that p',, can encode parameters such asp, ;.
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[0065] During the learning stage, to control the complex-
ity of the refined model, one or more of shrinkage, regular-
1zation, restriction, or selection methods may be used.
[0066] Various cost functions are possible, e.g. depending
on the supervised learning algorithm. An example cost
function for both regression and classification may be of the
form:

Cwp,p ) =2, Z(Si(x)~1(x, wp,p") )+ AW+ N (p,p')

[0067] Here 1 indexes the traiming data, for which the
signal 1s S,(x). The learning module 216 minimises C(w, p,
p') with respect to w, p and p' to find:

w,p,p'=argmin,, , C(w,p,p')

[0068] The optimized basis function weights W are then
used to construct the refined model '(x, p, w, p")=1(X, p)+g(X,
w, p'). Typically, basis functions may be discarded 11 their
corresponding weights w_ fall below some reasonable
threshold. The optimized parameters p and p' are not typi-
cally used to construct the refined model and are not fixed 1n
the refined model 1'(x, p, w, p'). In fact, p and p' are the
parameters that are optimized by the fitter during calibration.
[0069] To control the complexity of the refined model, we
may use regularization, which 1s governed by the regular-
1zation parameters A and A' and corresponding regularization
tfunctions A(w) and A'(p, p'). The regularization parameters
may be tuned during the learming stage using the validation
data and established methods. In this example, we allow for
different types of regularization for the basis function
weights w and the parameters of the basis functions and
existing model p' and p, respectively. L1 regularization may
be used for the basis function weights (A(W)==, _ lw_ ).
This 1s an attractive approach since 1t tends to completely
nullify perturbation models that poorly represent the training,
data (i.e. by setting their optimal weights w_ exactly to 0).
The learning algorithm can also be penalized 11 1t tries to
converge on parameters p, p' that exceed reasonable hard-
ware limits through some judiciously chosen regularization
function A'(p, p').

[0070] As discussed above, the perturbative refinement fits
away “imperiections” (e.g. features relating to higher order
qubit levels or features due to unforeseen but consistent
cllects) to make it easier to extract a good parameter set. In
some examples the learned features may also be correlated
to other qubit parameters, thereby allowing other calibra-
tions to be seeded 1ntelligently or supplanted altogether. For
example, i FIG. 5, the refined model additionally allows the
parameter p',, which derives from higher order qubait levels,
to be fitted.

[0071] By way of example, FIG. 7 separately illustrates
the perturbative approach and the basis expansion method
for a regression calibration. FIG. 7(a) 1s an 1illustrative
depiction of calibration data 1n the training stack. FIG. 7(b)
shows the existing calibration model 1(x, p) used to fit the
calibration data 1n order to extract some qubit parameter pl.
Clearly the data has some consistent imperfections with
respect to the existing model, which can make 1t hard to
reliably extract the qubit parameter p, at scale. We refine the
model perturbatively by applying the basis expansion
method in combination with supervised learning as dis-
cussed 1n detail above. For this example, the perturbation
g(x, w, p') comprises the three basis functions shown 1n FIG.
7(c). The test model 1s then given by t(x, p, w, p")=I(X,
p)+g(x, w, p'). The parameters of the test model are opti-
mized via the learning algorithm. For this example, the
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learning algorithm might find that only the third basis
function accurately represents the training data (e.g. only w,
1s of substantial magnitude, above some reasonable thresh-
old). This enables us to construct the refined model 1'(x, p.,
w, P )=I(X, p)+w,g.(X, p'), which can then be benchmarked
against 1(x, p). If the refined model outperforms the existing
model on the test data, with respect to the metrics discussed
above, 1t becomes the existing model 1n the model stack.
Note that p, may be extracted from p,, and not p;/' (e.g. the
parameter 1s not extracted from the perturbation).

[0072] Some portions of above description present the
features of the present mnvention in terms of algorithms and
symbolic representations ol operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled 1n the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, the reference to these
arrangements of operations in terms ol modules should not
be considered to imply a structural limitation and references
to functional names 1s by way of 1illustration and does not
infer a loss of generality.

[0073] Certain aspects of the present mvention include
process steps and instructions described herein 1n the form
of an algorithm. It should be understood that the process
steps, mstructions, of the present invention as described and
claimed, are executed by computer hardware operating
under program control, and not mental steps performed by
a human. Similarly, all of the types of data described and
claimed are stored 1n a computer readable storage medium
operated by a computer system, and are not simply disem-
bodied abstract ideas. In addition, the present invention 1s
not described with reference to any particular programming,
language. It 1s appreciated that a variety of programming
languages may be used to implement the teachings of the
present invention as described herein.

[0074] The present invention also relates to a computing
apparatus for performing the computing operations
described herein. This computing apparatus may be spe-
cially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be executed by the computer. The
computing apparatus referred to in the specification may
include a single processor or may be architectures employ-
ing multiple processor designs for increased computing
capability.

[0075] Implementations of the quantum subject matter and
quantum operations described in this specification may be
implemented 1n suitable quantum circuitry or, more gener-
ally, quantum computational systems, including the struc-
tures disclosed 1n this specification and their structural
equivalents, or 1n combinations of one or more of them. The
term “quantum computational systems” may include, but 1s
not limited to, quantum computers, quantum information
processing systems, quantum cryptography systems, or
quantum simulators.

[0076] The terms quantum information and quantum data
refer to mformation or data that 1s carried by, held or stored
in quantum systems, where the smallest non-trivial system 1s
a qubit, e.g., a system that defines the unit of quantum
information. It 1s understood that the term “qubit” encom-
passes all quantum systems that may be suitably approxi-
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mated as a two-level system 1n the corresponding context.
Such quantum systems may include multi-level systems,
¢.g., with two or more levels. By way of example, such
systems can include atoms, electrons, photons, 1ons or
superconducting qubits. In many implementations the com-
putational basis states are identified with the ground and first
excited states, however i1t 1s understood that other setups
where the computational states are i1dentified with higher
level excited states are possible. It 1s understood that quan-
tum memories are devices that can store quantum data for a
long time with high fidelity and efliciency, e.g., light-matter
interfaces where light 1s used for transmission and matter for
storing and preserving the quantum features of quantum data
such as superposition or quantum coherence.

[0077] Quantum circuit elements may be used to perform
quantum processing operations. That 1s, the quantum circuit
clements may be configured to make use of quantum-
mechanical phenomena, such as superposition and entangle-
ment, to perform operations on data 1 a non-deterministic
manner. Certain quantum circuit elements, such as qubits,
may be configured to represent and operate on information
in more than one state simultaneously. Examples of super-
conducting quantum circuit elements that may be formed
with the processes disclosed herein include circuit elements
such as co-planar waveguides, quantum LC oscillators,
qubits (e.g., flux qubits or charge qubits), superconducting
quantum 1nterference devices (SQUIDs) (e.g., RF-SQUID
or DCSQUID), inductors, capacitors, transmission lines,
ground planes, among others.

[0078] In contrast, classical circuit elements generally
process data in a deterministic manner. Classical circuit
clements may be configured to collectively carry out istruc-
tions of a computer program by performing basic arithmeti-
cal, logical, and/or input/output operations on data, 1n which
the data 1s represented 1n analogue or digital form. In some
implementations, classical circuit elements may be used to
transmit data to and/or receive data from the quantum circuit
clements through electrical or electromagnetic connections.
Examples of classical circuit elements that may be formed
with the processes disclosed herein include rapid single flux
quantum (RSFQ) devices, reciprocal quantum logic (RQL)
devices and ERSFQ devices, which are an energy-eflicient
version of RSFQ that does not use bias resistors. Other

classical circuit elements may be formed with the processes
disclosed herein as well.

[0079] During operation of a quantum computational sys-
tem that uses superconducting quantum circuit elements
and/or superconducting classical circuit elements, such as
the circuit elements described herein, the superconducting,
circuit elements are cooled down within a cryostat to tem-
peratures that allow a superconductor material to exhibit
superconducting properties.

[0080] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of what may be claimed, but rather
as descriptions of features that may be specific to particular
implementations. Certain features that are described 1n this
specification in the context of separate implementations can
also be implemented 1n combination 1n a single implemen-
tation. Conversely, various features that are described 1n the
context of a single implementation can also be implemented
in multiple implementations separately or i any suitable
sub-combination. Moreover, although features may be
described above as acting 1n certain combinations and even
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initially claimed as such, one or more features from a
claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed
to a sub-combination or variation of a sub-combination.
[0081] Smmilarly, while operations are depicted in the
drawings 1n a particular order, this should not be understood
as requiring that such operations be performed 1n the par-
ticular order shown or in sequential order, or that all 1llus-
trated operations be performed, to achueve desirable results.
For example, the actions recited i the claims can be
performed 1 a different order and still achieve desirable
results. In certain circumstances, multitasking and parallel
processing may be advantageous. Moreover, the separation
of various components i1n the implementations described
above should not be understood as requiring such separation
in all implementations.

[0082] A number of implementations have been described.
Nevertheless, 1t will be understood that various modifica-
tions may be made within the scope of the following claims.

1. An automated qubit calibration method for calibrating
physical qubits, comprising:

performing calibrations on one or more physical qubits to

obtain calibration data sets and corresponding param-

cter sets, wherein performing each calibration com-

prises:

obtaining a calibration data set from a system compris-
ing one or more physical qubits;

selecting a qubit calibration model, corresponding to
the calibration data set from a plurality of stored
qubit calibration models;

extracting one or more parameters from the calibration
data set, comprising fitting one or more parameters
of the selected qubit calibration model to the cali-
bration data set, using a fitter algorithm; and

storing the one or more extracted parameters as a
parameter set; and

refining one of the stored qubit calibration models, com-

prising;:

executing, at a learning module, a supervised machine
learning algorithm which processes a plurality of the
calibration data sets and corresponding parameter
sets to learn a perturbation to the stored qubit cali-
bration model that captures one or more features in
the plurality of calibration data sets that are not
captured by the qubit calibration model, thereby to
provide a refined qubit calibration model;

comparing the performance of the refined qubit cali-
bration model and the stored qubait calibration model;
and

replacing the stored qubit calibration model with the
refined qubit calibration model in dependence on the
comparison.

2. The method according to claim 1, wherein the refined
qubit calibration model 1s given by 1'(x, p, p")=1(X, p)+g(X,
p"), wherein 1(X, p) 1s the model and g(x, p') 1s a perturbation
function, wherein X represents one or more hardware param-
eters, p represents one or more model parameters, and p'
represents parameters of the perturbation function.

3. The method according to claim 2, wherein a basis
expansion method 1s used to determine the perturbation.

4. The method according to claim 1, wherein the super-
vised machine learning algorithm comprises a linear or
nonlinear regression algorithm based on linear or nonlinear
least squares regression, or a neural network.
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5. The method according to claim 1, wherein the super-
vised machine learning algorithm comprises a machine
learning classifier wherein each parameter set processed by
the supervised machine learning algorithm defines at least
one decision boundary defining a boundary between one or
more groups of calibration data points.

6. The method according to claim 3, wherein the machine
learning classifier comprises a linear or nonlinear classifier
based on least squares, linear or quadratic discriminant
analysis, logistic regression, support vector machine or a
neural network.

7. The method according to claim 1, wherein the learning,
module employs one or more of shrinkage, regularization,
restriction, or selection methods.

8. The method according to claim 1, comprising compar-
ing the refined qubit calibration model to the stored qubait
calibration model based on at least one of: test and/or
generalization error, and model complexity.

9. The method according to claim 1, wherein the qubit 1s
a system based on at least one of: a superconducting qubiut,
a system based on one or more 1on traps, quantum dots,
neutral atoms, Rydberg states, solid-state defects, molecules,
or photons.

10. The method according to claim 1, wherein the refined
qubit calibration model permits extraction of one or more
qubit parameters which could not be extracted using the
qubit calibration model.

11. The method according to claim 1, further comprising:

performing a plurality of calibrations using a plurality of

respective refined qubit calibration models; and
further refining one or more of said refined qubait calibra-
tion models.

12. The method according to claim 1, comprising select-
ing a qubit and performing a sequence of calibrations on the
selected qubit, wherein one or more of said calibrations are
performed dependent on whether one or more earlier cali-
brations are performed successiully, comprising determin-
ing whether a calibration data set should be processed by the
supervised machine Ilearning algorithm dependent on
whether a later calibration 1n the sequence 1s performed.

13. The method according to claim 1, comprising deter-
mimng whether a calibration data set 1s processed by the
supervised machine learning algorithm using a computer-
implemented classification algorithm.

14. A system comprising one or more computers and one
or more storage devices storing instructions that are oper-
able, when executed by the one or more computers, to cause
the one or more computers to perform operations compris-
ng:

performing calibrations on one or more physical qubits to

obtain calibration data sets and corresponding param-

cter sets, wherein performing each calibration com-

Prises:

obtaining a calibration data set from a system compris-
ing one or more physical qubits;

selecting a qubit calibration model, corresponding to
the calibration data set from a plurality of stored
qubit calibration models;

extracting one or more parameters from the calibration
data set, comprising fitting one or more parameters
of the selected qubit calibration model to the cali-
bration data set, using a fitter algorithm; and

storing the one or more extracted parameters as a
parameter set; and
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refining one of the stored qubit calibration models, com-

prising:

executing, at a learning module, a supervised machine
learning algorithm which processes a plurality of the
calibration data sets and corresponding parameter
sets to learn a perturbation to the stored qubit cali-
bration model that captures one or more features 1n
the plurality of calibration data sets that are not
captured by the qubit calibration model, thereby to
provide a refined qubit calibration model;

comparing the performance of the refined qubit cali-
bration model and the stored qubait calibration model;
and

replacing the stored qubit calibration model with the

refined qubit calibration model in dependence on the
comparison.

15. The system according to claim 14, wherein the refined
qubit calibration model 1s given by 1'(x, p, p")=1(X, p)+g(X,
p'), wherein 1(x, p) 1s the model and g(x, p') 1s a perturbation
function, wherein x represents one or more hardware param-
eters, p represents one or more model parameters, and p'
represents parameters of the perturbation function.

16. The system according to claim 15, wherein a basis
expansion method 1s used to determine the perturbation.

17. The system according to claim 14, wherein the opera-
tions further comprise pertorming a plurality of calibrations
using the refined qubit calibration model.

18. A computer-readable storage medium comprising
instructions stored thereon that are executable by a process-
ing device and upon such execution cause the processing
device to perform operations comprising:

performing calibrations on one or more physical qubits to

obtain calibration data sets and corresponding param-

cter sets, wherein performing each calibration com-

prises:

obtaining a calibration data set from a system compris-
ing one or more physical qubits;

selecting a qubit calibration model, corresponding to
the calibration data set from a plurality of stored
qubit calibration models;

extracting one or more parameters from the calibration
data set, comprising fitting one or more parameters
of the selected qubit calibration model to the cali-
bration data set, using a fitter algorithm; and

storing the one or more extracted parameters as a
parameter set; and

refining one of the stored qubit calibration models, com-

prising;:

executing, at a learning module, a supervised machine
learning algorithm which processes a plurality of the
calibration data sets and corresponding parameter
sets to learn a perturbation to the stored qubit cali-
bration model that captures one or more features in
the plurality of calibration data sets that are not
captured by the qubit calibration model, thereby to
provide a refined qubit calibration model;

comparing the performance of the refined qubit cali-
bration model and the stored qubait calibration model;
and

replacing the stored qubit calibration model with the

refined qubit calibration model in dependence on the
comparison.

19. The computer-readable storage medium according to
claam 18, wherein the refined qubit calibration model 1s
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given by T'(x, p, p")=1(X, p)+g(x, p'), wherein 1(x, p) 1s the
model and g(x, p') 1s a perturbation function, wherein x
represents one or more hardware parameters, p represents
one or more model parameters, and p' represents parameters
of the perturbation function.

20. The computer-readable storage medium according to
claam 19, wherein a basis expansion method 1s used to
determine the perturbation.

¥ H H ¥ ¥
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